
Related Links:
 sine, cosine , tangent
 Pythagorean Theorem
 Right Triangle Calculator
There are many ways to find the side length of a right triangle. We are going to focus on two specific cases.
Case I
When we know two sides of the right triangle, in which case, we will use the Pythagorean theorem
Case II
When we know 1 side and 1 angle of the right triangle, in which case, we will use good old sohcahtoa
Video Tutorial
on Finding the Side Length of a Right Triangle
Practice Problems
Calculate the length of the sides below. In each case, round your answer to the nearest hundredth
Since we know 2 sides of this triangle, we will use the Pythagorean theorem to solve for x.
Substitute the two known sides into the Pythagorean theorem's formula:
 A² + B² = C²
 8² + 6² = x²
 100 = x²
Since we know 1 side and 1 angle of this triangle, we will use sohcahtoa
Set up an equation using a sohcahtoa ratio. Since we know the hypotenuse and want to find the side opposite of the 53° angle, we are dealing with sine
Now, just solve the Equation:
x = 15sin(53) = 11.98
Since we know 2 sides of this triangle, we will use the Pythagorean theorem to solve for side t
Substitute the two known sides into the Pythagorean theorem's formula:
A² + B² = C²
Since we know 1 side and 1 angle of this triangle, we will use sohcahtoa
Set up an equation using the sine, cosine or tangent ratio Since we want to know the length of the hypotenuse , and we already know the side opposite of the 53° angle, we are dealing with sine
$$ sin(67) = \frac{opposite}{hypotenuse} \\ sin(67) = \frac{24}{x} $$
Now, just solve the Equation:
$$ x = \frac{ 24}{ sin(67) } \approx 26.07 $$
Since we know 2 sides and 1 angle of this triangle, we can use either the Pythagorean theorem ( by making use of the two sides ) or use sohcahtoa (by making use of the angle and 1 of the given sides)
Chose which way you want to solve this problem. There are several different solutions. The only thing you cannot use is sine, since the sine ratio does not involve the adjacent side, x, which we are trying to find.
0ythagorean Theorem  Using Cosine  Using Tangent 

A² + B² = C²

The answers are slightly different (tangent s 35.34 vs 36 for the others) due to rounding issues. I rounded the angle's measure to 23° for the sake of simplicity of the diagram. A more accurate angle measure would have been 22.61986495°. If you use that value instead of 23°, you will get answers that are more consistent..
$$ x = \frac{ 24}{ sin(67) } \approx 26.07 $$