Mathwarehouse Logo

Please disable adblock in order to continue browsing our website.

Unfortunately, in the last year, adblock has now begun disabling almost all images from loading on our site, which has lead to mathwarehouse becoming unusable for adlbock users.

How to Multiply & Divide Rational Expressions

Steps for multiplying & Dividing Rational Expressions

Download this web page as a pdf with answer key

Multiply Rational Expressions

loading powerpoint

How to divide rational expressions

loading powerpoint

Practice Problems

Problem 1

Evaluate $$ \displaystyle \frac{x-4}{x^2 + 6x -7} \cdot \frac{x^2 + 4x - 5}{x^2 + 7x + 10} $$

Step 1

Factor each numerator and denominator.

$$ \begin{align*} \frac{x-4}{x^2 + 6x -7} \cdot \frac{x^2 + 4x - 5}{x^2 + 7x + 10} = \frac{x-4}{(x + 7)(x - 1)} \cdot \frac{(x + 5)(x - 1)}{(x+5)(x+2)} \end{align*} $$

Step 2

Write the product as a single fraction.

$$ \begin{align*} \frac{x-4}{(x + 7)(x - 1)} \cdot \frac{(x + 5)(x - 1)}{(x+5)(x+2)} = \frac{(x-4)(x + 5)(x - 1)}{(x + 7)(x - 1)(x+5)(x+2)} \end{align*} $$

Step 3

Divide out the common factors.

$$ \begin{align*} \frac{(x-4)(x + 5)(x - 1)}{(x + 7)(x - 1)(x+5)(x+2)} & = \frac{(x-4)\cancelred{(x + 5)}\cancelred{(x - 1)}}{(x + 7)\cancelred{(x - 1)}\cancelred{(x+5)}(x+2)}\\[6pt] & = \frac{x-4}{(x + 7)(x+2)};\quad x \neq -5, 1 \end{align*} $$

Note that we keep track of the $$x$$-values that would cause the calculation to be undefined at any step.

Step 4

(Optional) Some instructors will ask you to expand the numerator and denominators when possible.

$$ \begin{align*} \frac{x-4}{(x + 7)(x+2)} = \frac{x-4}{x^2 + 9x + 14} \end{align*} $$

Answer

Note: The answer should include the restrictions we found in Step 3.

$$ \begin{align*} \frac{x-4}{x^2 + 6x -7} \cdot \frac{x^2 + 4x - 5}{x^2 + 7x + 10} = \frac{x-4}{(x + 7)(x+2)};\quad x \neq -5, 1 \end{align*} $$

Problem 2

Evaluate $$ \displaystyle \frac{4x^2+12x}{x^2 - 3x - 18}\cdot \frac{x-6}{x^2 - 8x} $$

Step 1

Factor the numerators and denominators.

$$ \begin{align*} \frac{4x^2+12x}{x^2 - 3x - 18}\cdot \frac{x-6}{x^2 - 8x} = \frac{4x(x + 3)}{(x - 6)(x + 3)}\cdot \frac{x-6}{x(x - 8)} \end{align*} $$

Step 2

Write the product as a single fraction.

$$ \begin{align*} \frac{4x(x + 3)}{(x - 6)(x + 3)}\cdot \frac{x-6}{x(x - 8)} = \frac{4x(x + 3)(x-6)}{x(x - 8)(x - 6)(x + 3)} \end{align*} $$

Step 3

Divide out the common factors.

$$ \begin{align*} \frac{4x(x + 3)(x-6)}{x(x - 8)(x - 6)(x + 3)} & = \frac{4\cancelred{x}\cancelred{(x + 3)}\cancelred{(x-6)}}{\cancelred{x}(x - 8)\cancelred{(x - 6)}\cancelred{(x + 3)}}\\[6pt] & = \frac{4}{x - 8}; \quad x \neq -3, 0, 6 \end{align*} $$

Answer

$$ \begin{align*} \frac{4x^2+12x}{x^2 - 3x - 18}\cdot \frac{x-6}{x^2 - 8x} = \frac{4}{x - 8}; \quad x \neq -3, 0, 6 \end{align*} $$

Problem 3

Evaluate $$ \displaystyle \frac{2x^2 + 5x + 2}{4x^2 +21x + 27}\cdot \frac{16x^2 - 81}{8x^2 - 14x - 9} $$

Step 1

Factor the numerators and the denominators.

$$ \begin{align*} \frac{2x^2 + 5x + 2}{4x^2 + 21x + 27}\cdot \frac{16x^2 - 81}{8x^2 - 14x - 9} = \frac{(2x+ 1)(x + 2)}{(x + 3)(4x + 9)}\cdot \frac{(4x - 9)(4x + 9)}{(2x+1)(4x-9)} \end{align*} $$

Step 2

Rewrite the product as a single fraction.

$$ \begin{align*}{(2x+ 1)(x + 2)}{(x + 3)(4x + 9)}\cdot \frac{(4x - 9)(4x + 9)}{(2x+1)(4x-9)} = \frac{(2x+ 1)(x + 2)(4x - 9)(4x + 9)}{(x + 3)(4x + 9)(2x+1)(4x-9)} \end{align*} $$

Step 3

Divide out the common factors.

$$ \begin{align*} \frac{(2x+ 1)(x + 2)(4x - 9)(4x + 9)}{(x + 3)(4x + 9)(2x+1)(4x-9)} & = \frac{\cancelred{(2x+ 1)}(x + 2)\cancelred{(4x - 9)}\cancelred{(4x + 9)}}{(x + 3)\cancelred{(4x + 9)}\cancelred{(2x+ 1)}\cancelred{(4x - 9)}}\\[6pt] & = \frac{x + 2}{x + 3}; \quad x \neq -\frac 9 4, -\frac 1 2, \frac 9 4 \end{align*} $$

Answer

$$ \begin{align*} \frac{2x^2 + 5x + 2}{4x^2 +21x + 27}\cdot \frac{16x^2 - 81}{8x^2 - 14x - 9} = \frac{x + 2}{x + 3}; \quad x \neq -\frac 9 4, -\frac 1 2, \frac 9 4 \end{align*} $$

Problem 4

Evaluate $$ \displaystyle \frac{7x^2 - 12x - 4}{5x+1}\cdot \frac{5x^2 - 19x - 4}{3x^2 - 18x + 24} $$

Step 1

Factor the numerators and denominators.

$$ \begin{align*} \frac{7x^2 - 12x - 4}{5x+1}\cdot \frac{5x^2 - 19x - 4}{3x^2 - 18x + 24} = \frac{(x - 2)(7x + 2)}{5x+1}\cdot \frac{(x - 4)(5x + 1)}{3(x - 4)(x - 2)} \end{align*} $$

Step 2

Rewrite the product as a single fraction.

$$ \begin{align*} \frac{(x - 2)(7x + 2)}{5x+1}\cdot \frac{(x - 4)(5x + 1)}{3(x - 4)(x - 2)} = \frac{(x - 2)(7x + 2)(x - 4)(5x + 1)}{3(5x+1)(x - 4)(x - 2)} \end{align*} $$

Step 3

Divide out the common factors.

$$ \begin{align*} \frac{(x - 2)(7x + 2)(x - 4)(5x + 1)}{3(5x+1)(x - 4)(x - 2)} & = \frac{\cancelred{(x - 2)}(7x + 2)\cancelred{(x - 4)}\cancelred{(5x + 1)}}{3\cancelred{(5x + 1)}\cancelred{(x - 4)}\cancelred{(x - 2)}}\\[6pt] & = \frac{7x + 2} 3;\quad x \neq -\frac 1 5, 2, 4 \end{align*} $$

Answer

$$ \begin{align*} \frac{7x^2 - 12x - 4}{5x+1}\cdot \frac{5x^2 - 19x - 4}{3x^2 - 18x + 24} = \frac{7x + 2} 3;\quad x \neq -\frac 1 5, 2, 4 \end{align*} $$

Problem 5

Evaluate $$ \displaystyle \frac{x^2 - 5x + 6}{x^2+5x} \div \frac{x^2 - 4}{x+5} $$

Step 1

Factor the numerators and denominators.

$$ \begin{align*} \frac{x^2 - 5x + 6}{x^2+5x} \div \frac{x^2 - 4}{x+5} = \frac{(x - 3)(x - 2)}{x(x+5)} \div \frac{(x + 2)(x - 2)}{x+5} \end{align*} $$

Note that our final answer will need to restrict the values of $$x$$ so that $$x \neq -5, 0$$.

Step 2

Rewrite the division as a product with the reciprocal of the second expression.

$$ \begin{align*} \frac{(x - 3)(x - 2)}{x(x+5)} \div \frac{(x + 2)(x - 2)}{x+5} = \frac{(x - 3)(x - 2)}{x(x+5)} \cdot \frac{x+5}{(x + 2)(x - 2)} \end{align*} $$

Note that we now also need to make sure our answer restricts $$x$$ so $$x \neq -2, 2$$.

Step 3

Rewrite the product as a single fraction.

$$ \begin{align*} \frac{(x-3)(x-2)}{x(x+5)} \cdot \frac{x+5}{(x-2)(x+2)} ={(x-3)(x-2)(x+5)}{x(x+5)(x-2)(x+2)} \end{align*} $$

Step 4

Divide out the common factors.

$$ \begin{align*} \frac{(x-3)(x-2)(x+5)}{x(x+5)(x-2)(x+2)} & = \frac{(x-3)\cancelred{(x-2)}\cancelred{(x+5)}}{x\cancelred{(x+5)}\cancelred{(x-2)}(x+2)}\\[6pt] & = \frac{x-3}{x(x+2)};\quad x \neq -5, 2 \end{align*} $$

Note that the other restrictions we identified ($$x \neq -2$$ and $$x\neq 0$$) are still implied in the expression itself.

Step 5

(Optional) Some instructors will require you to expand the denominator.

$$ \begin{align*} \frac{x-3}{x(x+2)} = \frac{x-3}{x^2+2x};\quad x \neq -5, 2 \end{align*} $$

Answer

$$ \begin{align*} \frac{x^2 - 5x + 6}{x^2+5x} \div \frac{x^2 - 4}{x+5} = \frac{x-3}{x(x+2)};\quad x \neq -5, 2 \end{align*} $$

Problem 6

Evaluate $$ \displaystyle \frac{x^2 + 9x + 18}{x^2 -6x + 5}\div \frac{x^2 + 7x +12}{x^2 - 3x - 10} $$

Step 1

Factor the numerators and denominators.

$$ \begin{align*} \frac{x^2 + 9x + 18}{x^2 -6x + 5}\div \frac{x^2 + 7x +12}{x^2 - 3x - 10} = \frac{(x+3)(x+6)}{(x-5)(x-1)}\div \frac{(x+3)(x+4)}{(x-5)(x+2)} \end{align*} $$

Note that our answer will need to restrict the $$x$$-values so that $$x \neq -2, 5, 1$$.

Step 2

Rewrite the division as a product with the reciprocal of the second expression.

$$ \begin{align*} \frac{(x+3)(x+6)}{(x-5)(x-1)}\div \frac{(x+3)(x+4)}{(x-5)(x+2)} = \frac{(x+3)(x+6)}{(x-5)(x-1)}\cdot \frac{(x-5)(x+2)}{(x+3)(x+4)} \end{align*} $$

Note that our answer will also need to restrict $$x$$ so that $$x \neq -4, -3$$.

Step 3

Rewrite the product as a single fraction.

$$ \begin{align*} \frac{(x+3)(x+6)}{(x-5)(x-1)}\cdot \frac{(x-5)(x+2)}{(x+3)(x+4)} = \frac{(x+3)(x+6)(x-5)(x+2)}{(x-5)(x-1)(x+3)(x+4)} \end{align*} $$

Step 4

Divide out the common factors.

$$ \begin{align*} \frac{(x+3)(x+6)(x-5)(x+2)}{(x-5)(x-1)(x+3)(x+4)} & = \frac{\cancelred{(x+3)}(x+6)\cancelred{(x-5)}(x+2)}{\cancelred{(x-5)}(x-1)\cancelred{(x+3)}(x+4)}\\[6pt] & = \frac{(x+6)(x+2)}{(x-1)(x+4)}; \quad x\neq -3,-2, 5 \end{align*} $$

The other restrictions are still implied in the expression itself.

Step 5

(Optional) Some instructors will require you to expand the numerator and denominator.

$$ \begin{align*} \frac{(x+6)(x+2)}{(x-1)(x+4)} = \frac{x^2 + 8x + 12}{x^2 + 3x - 4}; \quad x\neq -3,-2, 5 \end{align*} $$

Answer

$$ \begin{align*} \frac{x^2 + 9x + 18}{x^2 -6x + 5}\div \frac{x^2 + 7x +12}{x^2 - 3x - 10} = \frac{(x+6)(x+2)}{(x-1)(x+4)}; \quad x\neq -3,-2, 5 \end{align*} $$

Problem 7

Evaluate $$ \displaystyle \frac{2x - 5}{x^2 - 4x + 3}\div \frac{2x^2 + 9x + 9}{2x^2 + x - 3} $$

Step 1

Factor the numerators and denominators.

$$ \begin{align*} \frac{2x - 5}{x^2 - 4x + 3}\div \frac{2x^2 + 9x + 9}{2x^2 + x - 3} = \frac{2x - 5}{(x - 3)(x - 1)}\div \frac{(x+3)(2x+3)}{(2x+3)(x-1)} \end{align*} $$

Note that we will need to restrict the $$x$$-values of our answer so $$x \neq -\frac 3 2, 1, 3$$.

Step 2

Rewrite the division as a product with the reciprocal of the second expression.

$$ \begin{align*} \frac{2x - 5}{(x - 3)(x - 1)}\div \frac{(x+3)(2x+3)}{(2x+3)(x-1)} = \frac{2x - 5}{(x - 3)(x - 1)}\cdot \frac{(2x+3)(x-1)}{(x+3)(2x+3)} \end{align*} $$

Note that we will also need to restrict our answer so that $$x\neq -3$$.

Step 3

Rewrite the product as a single fraction.

$$ \begin{align*} \frac{2x - 5}{(x - 3)(x - 1)}\cdot \frac{(2x+3)(x-1)}{(x+3)(2x+3)} = \frac{(2x - 5)(2x+3)(x-1)}{(x - 3)(x - 1)(x+3)(2x+3)} \end{align*} $$

Step 4

Divide out the common factors.

$$ \begin{align*} \frac{(2x - 5)(2x+3)(x-1)}{(x - 3)(x - 1)(x+3)(2x+3)} & = \frac{(2x - 5)\cancelred{(2x+3)}\cancelred{(x-1)}}{(x - 3)\cancelred{(x-1)}(x+3)\cancelred{(2x+3)}}\\[6pt] & = \frac{2x - 5}{(x - 3)(x+3)};\quad x\neq -\frac 3 2, 1 \end{align*} $$

The other restrictions we found are still implied in the expression itself.

Step 5

(Optional) Some instructors will require you to expand the denominator.

$$ \begin{align*} \frac{2x - 5}{(x - 3)(x+3)} = \frac{2x - 5}{x^2 - 9};\quad x\neq -\frac 3 2, 1 \end{align*} $$

Answer

$$ \begin{align*} \frac{2x - 5}{x^2 - 4x + 3}\div \frac{2x^2 + 9x + 9}{2x^2 + x - 3} = \frac{2x - 5}{(x - 3)(x+3)};\quad x\neq -\frac 3 2, 1 \end{align*} $$

Problem 8

Evaluate $$ \displaystyle \frac{16x^2 + 16x + 3}{8x^2 +18x - 5}\div\frac{12x^2 + 11x + 2}{12x^2 + 5x - 2} $$

Step 1

Factor the numerators and denominators.

$$ \begin{align*} \frac{16x^2 + 16x + 3}{8x^2 +18x - 5}\div\frac{12x^2 + 11x + 2}{12x^2 + 5x - 2} = \frac{(4x + 3)(4x + 1)}{(4x-1)(2x+5)}\div\frac{(4x+1)(3x+2)}{(3x + 2)(4x - 1)} \end{align*} $$

We will need to restrict our answer so that $$x \neq -\frac 5 2, -\frac 2 3, \frac 1 4$$

Step 2

Rewrite the division as a product with the reciprocal of the second expression.

$$ \begin{align*} \frac{(4x + 3)(4x + 1)}{(4x-1)(2x+5)}\div\frac{(4x+1)(3x+2)}{(3x + 2)(4x - 1)} = \frac{(4x + 3)(4x + 1)}{(4x-1)(2x+5)}\cdot\frac{(3x + 2)(4x - 1)}{(4x+1)(3x+2)} \end{align*} $$

We will also need to restrict our answer so that $$x \neq -\frac 1 4$$.

Step 3

Rewrite the product as a single fraction.

$$ \begin{align*} \frac{(4x + 3)(4x + 1)}{(4x-1)(2x+5)}\cdot\frac{(3x + 2)(4x - 1)}{(4x+1)(3x+2)} = \frac{(4x + 3)(4x + 1)(3x + 2)(4x - 1)}{(4x-1)(2x+5)(4x+1)(3x+2)} \end{align*} $$

Step 4

Divide out the common factors.

$$ \begin{align*} \frac{(4x + 3)(4x + 1)(3x + 2)(4x - 1)}{(4x-1)(2x+5)(4x+1)(3x+2)} & = \frac{(4x + 3)\cancelred{(4x + 1)}\cancelred{(3x + 2)}\cancelred{(4x - 1)}}{\cancelred{(4x - 1)}(2x+5)\cancelred{(4x + 1)}\cancelred{(3x + 2)}}\\[6pt] & = \frac{4x + 3}{2x + 5}; \quad x \neq -\frac 2 3, -\frac 1 4, \frac 1 4 \end{align*} $$

The other restriction is still implied in the expression itself.

Answer

$$ \begin{align*} \frac{16x^2 + 16x + 3}{8x^2 +18x - 5}\div\frac{12x^2 + 11x + 2}{12x^2 + 5x - 2} = \frac{4x + 3}{2x + 5}; \quad x \neq -\frac 2 3, -\frac 1 4, \frac 1 4 \end{align*} $$

Download this web page as a pdf with answer key
Back to Simplify Rational Expressions Next to Rationals Worksheets