
Related Links:
 Multiplying Monomials Worksheet
 Definition of Monomial
Example
Example 1
Let's multiply the following 2 monomials: (5x )(3x^{2}y)
Step 1Group variables by exponent and group the coefficients (apply commutative property of multiplication)
(5 • 3)(x • x^{2})(y)
Multiply each like term (remember your exponents laws
(5 • 3)(x • x^{2})(y)=(15)( x^{(2+1)})(y)
15x^{3}y
Video Tutorial
on How To Multiply Monomials
Practice Problems
Group variables by exponent and group the coefficients (apply commutative property of multiplication)
(2 • 4)(x • x^{3})(k)
Multiply each like term (remember your exponents laws)
2 • 4)(x • x^{3})(k) = (8)( x^{(1 + 3)})(k)
8x^{4}k
Group variables by exponent and group the coefficients (apply commutative property of multiplication)
(5 • 7)(x^{2} • x^{5})(k^{4 }• k)
Multiply each like term (remember the exponents rules)
(5 • 7)(x^{2} • x^{5})(k^{4 }• k)
(35)( x^{(2 + 4)})(k^{(4 + 1)})
35 x^{6}
Group variables by exponent and group the coefficients (apply commutative property of multiplication)
(6 • 2 • 5)(x^{4} • x^{3} • x^{2})(k^{8 }• k)(z)
Multiply each like term (remember the exponents rules)
(6 • 2 • 5)(x^{4} • x^{3} • x^{2})(k^{8 }• k)(z)
(60)( x^{(4 + 3 + 2)})(k^{(8 + 1)})(z)
60 x^{9}k^{9 }z
Group variables by exponent and group the coefficients (apply commutative property of multiplication)
( 7 • 3 • 9 )( a^{4} • a^{5} ) ( t^{7} • t^{3} • t^{5 } )( k^{2} • k^{4} )(f)
Multiply each like term (remember the exponents rules)
( 7 • 3 • 9 )( a^{4} • a^{5} ) ( t^{7} • t^{3} • t^{5 } )( k^{2} • k^{4} )(f)
(189)( a^{(4 + 5)})(t^{(7 + 3 + 5 )})( k^{(2 + 4)})( f)
189 a^{9 }t^{15} k^{6}f