**Examples**

##### Example 1

$$ A (\color{Red}{2}, \color{Green}{14}) \text{ and }B (\color{Red}{4}, \color{Green}{6}) \\ Midpoint = \Big(\frac{ \color{Red}{x_2 + x_1}}{2}, \frac{\color{Green}{y_2 + y_1}}{2} \Big) \\ \Big( \frac{\color{Red}{2 + 4} }{ 2}, \frac{\color{Green}{14 + 6} }{ 2} \Big) = \Big( \frac{ 6 }{ 2}, \frac{ 20 }{ 2} \Big) \\ Midpoint = (3, 10) $$

##### Example 2

**Practice** Problems

##### Problem 1

##### Problem 2

$$ A (\color{Red}{4}, \color{Green}{ 7 }) \text{ and }B (\color{Red}{-8}, \color{Green}{ 15 }) \\ Midpoint = \Big(\frac{ \color{Red}{x_2 + x_1}}{2}, \frac{\color{Green}{y_2 + y_1}}{2} \Big) \\ \Big( \frac{\color{Red}{4 + -8} }{ 2}, \frac{\color{Green}{7 + 15} }{ 2} \Big) = \Big( \frac{ -4}{ 2}, \frac{22}{ 2} \Big) \\ Midpoint = (-2,11) $$

##### Problem 3

Go the same amount in the x and y directions.

##### Problem 4

$$ A (\color{Red}{-2}, \color{Green}{ 3 }) \text{ and }B (\color{Red}{-10}, \color{Green}{ 12 }) \\ Midpoint = \Big(\frac{ \color{Red}{x_2 + x_1}}{2}, \frac{\color{Green}{y_2 + y_1}}{2} \Big) \\ \Big( \frac{\color{Red}{-2 + -10} }{ 2}, \frac{\color{Green}{3 + 12} }{ 2} \Big) = \Big( \frac{ -12}{ 2}, \frac{15}{ 2} \Big) \\ Midpoint = (-6,7.5) $$