How to Use the Power Rule for Derivatives. Examples and Interactive Practice Problems - 14 Practice Problems explained step by step with interactive problems, showing all work.

How to Use the Power Rule for Derivatives:
Practice Problems

Download this web page as a pdf with answer key
Problem 1

Suppose $$f(x) = -9x^{50}$$. Find $$f'(x)$$.

Step 1

Use the power rule for derivatives.

$$ \begin{align*} f(x) & = -9x^{\blue{50}}\\ f'(x) & = -9\blue{(50)}x^{\blue{50}-1}\\ & = -450x^{49} \end{align*} $$

Answer

$$f'(x) = -450x^{49}$$

Problem 2

Suppose $$\displaystyle f(x) = \frac{3x^7}{14}$$. Find $$f'(x)$$.

Step 1

Use the power rule for derivatives.

$$ \begin{align*} f(x) & = \frac 3 {14} x^{\blue 7}\\[6pt] f'(x) & = \frac 3 {14}\blue{(7)}x^{\blue 7 -1}\\[6pt] f'(x) & = \frac 3 2 x^{6} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac 3 2 x^6$$

Problem 3

Suppose $$f(x) = x^4 - 8x^3 + 7x^2 - 2x + 1$$. Find $$f'(2)$$.

Step 1

Differentiate each term using the power rule or one of the basic rules.

$$ \begin{align*} f(x) & = x^{\blue 4} - 8x^{\blue 3} + 7x^{\blue 2} - \red{2x} + \red 1\\ f'(x) & = \blue 4 x^{\blue 4 -1} - 8\blue{(3)}x^{\blue 3 -1} + 7\blue{(2)} x^{\blue 2 -1} - \red{2(1)} + \red 0\\ & = 4x^3-24x^2+14x-2 \end{align*} $$

Answer

$$ f'(x) = 4x^3-24x^2+14x+2 $$

Problem 4

Suppose $$f(x) = 9x^5 - \frac 3 4 x^3 + 13x^2 + 7$$. Find $$f'(x)$$.

Step 1

Differentiate each term using the power rule or one of the basic rules.

$$ \begin{align*} f(x) & = 9x^{\blue 5} - \frac 3 4 x^{\blue 3} + 13x^{\blue 2} + \red 8\\[6pt] f'(x) & = 9\blue{(5)}x^{\blue 5 -1} - \frac 3 4 \blue{(3)} x^{\blue 3 -1} + 13\blue{(2)}x^{\blue 2 -1} + \red 0\\[6pt] & = 45x^4 - \frac 9 4 x^2 + 26x \end{align*} $$

Answer

$$\displaystyle f'(x) = 45x^4 - \frac 9 4 x^2 + 26x$$

Problem 5

Suppose $$f(x) = 2 - \sqrt x + 8\sqrt[3] x$$. Find $$f'(x)$$.

Step 1

Rewrite $$f(x)$$ so each term has a power function form.

$$ f(x) = 2 - \sqrt x + 8\sqrt[3] x = 2 - x^{1/2} + 8x^{1/3} $$

Step 2

Differentiate each term using basic rules or the power rule.

$$ \begin{align*} f(x) & = \red 2 - x^{\blue{1/2}} + 8x^{\blue{1/3}}\\[6pt] f'(x) & = \red 0 -\blue{\left(\frac 1 2\right)}x^{\blue{\frac 1 2} - 1} + 8\blue{\left(\frac 1 3\right)}x^{\blue{\frac 1 3} - 1}\\[6pt] & = -\frac 1 2x^{-1/2} + \frac 8 3 x^{-2/3} \end{align*} $$

Step 3 (Optional)

Rewrite the derivative using radicals. Then rationalize any denominators that need it.

$$ \begin{align*} f'(x) & = -\frac 1 2x^{-1/2} + \frac 8 3 x^{-2/3}\\[6pt] & = -\frac 1 2\cdot \frac 1 {x^{1/2}} + \frac 8 3\cdot \frac 1 {x^{2/3}}\\[6pt] & = -\frac 1 2\cdot \frac 1 {\sqrt x} + \frac 8 3\cdot \frac 1 {\sqrt[3]{x^2}}\\[6pt] & = -\frac 1 {2\sqrt x} + \frac 8 {3\,\sqrt[3]{x^2}}\\[6pt] & = -\frac{\sqrt x}{2x} + \frac{8\sqrt[3] x}{3x} \end{align*} $$

Answer

$$\displaystyle f'(x) = -\frac{\sqrt x}{2x} + \frac{8\sqrt[3] x}{3x}$$

Problem 6

Suppose $$\displaystyle f(x) = \frac{15} {\sqrt[5] x} - \sqrt[9] x$$. Find $$f'(x)$$.

Step 1

Rewrite the function so that each term has the form of a power function.

$$ f(x) = \frac{15} {\sqrt[5] x} - \sqrt[9] x = 15x^{-1/5} - x^{1/9} $$

Step 2

Differentiate each term with the power rule.

$$ \begin{align*} f(x) & = 15x^{\blue{-1/5}} - x^{\red{1/9}}\\[6pt] f'(x) & = 15\blue{\left(-\frac 1 5\right)}x^{\blue{-\frac 1 5}-1} - \red{\frac 1 9}x^{\red{\frac 1 9} - 1}\\[6pt] & = -3x^{-6/5} - \frac 1 9x^{-8/9} \end{align*} $$

Step 3 (Optional)

Rewrite the derivative so it involves radicals. Rationalize any denominators that need it.

$$ \begin{align*} f'(x) & = -3x^{-6/5} - \frac 1 9x^{-8/9}\\[6pt] & = -3\cdot \frac 1 {x^{6/5}} - \frac 1 9\cdot \frac 1 {x^{8/9}}\\[6pt] & = -\frac 3 {\sqrt[5]{x^6}} - \frac 1 9\cdot \frac 1 {\sqrt[9]{x^8}}\\[6pt] & = -\frac 3 {x\sqrt[5] x} - \frac 1 {9\sqrt[9]{x^8}}\\[6pt] & = -\frac{3\sqrt[5]{x^4}}{x^2} - \frac{\sqrt[9] x}{9x} \end{align*} $$

Answer

$$ \displaystyle f'(x) = -\frac{3\sqrt[5]{x^4}}{x^2} - \frac{\sqrt[9] x}{9x} $$

Problem 7

Suppose $$\displaystyle f(x) = \frac{12}{x^6}$$. Find $$f'(1)$$.

Step 1

Rewrite the function so it has a power function form.

$$ f(x) = \frac{12}{x^6} = 12x^{-6} $$

Step 2

Use the power rule to differentiate the function.

$$ \begin{align*} f(x) & = 12 x^{\blue{-6}}\\[6pt] f'(x) & = 12\blue{(-6)}x^{\blue{-6}-1}\\[6pt] & = -72x^{-7}\\[6pt] & = -\frac{72}{x^7} \end{align*} $$

Step 3

Evaluate the derivative at $$x = 1$$.

$$ f'(1) = -\frac{72}{(1)^7} = -\frac{72} 1 = -72 $$

Answer

$$f'(1) = -72$$

Problem 8

Suppose $$\displaystyle f(x) = \frac{19}{x^{0.01}} + \frac{25}{x^{2/5}}$$. Find $$f'(x)$$.

Step 1

Rewrite the function so each term has the power function form.

$$ f(x) = \frac{19}{x^{0.01}} + \frac{25}{x^{2/5}} = 19x^{-0.01} + 25x^{-2/5} $$

Step 2

Differentiate each term using the power rule.

$$ \begin{align*} f(x) & = 19x^{\blue{-0.01}} + 25x^{\red{-2/5}}\\[6pt] f'(x) & = 19\blue{(-0.01)}x^{\blue{-0.01} - 1} + 25\red{\left(-\frac 2 5\right)}x^{\red{-\frac 2 5} - 1}\\[6pt] & = -0.19x^{-1.01} -10x^{-7/5} \end{align*} $$

Step 3 (Optional)

Rewrite the derivative in fractional form.

$$ \begin{align*} f'(x) & = -0.19x^{-1.01} -10x^{-7/5}\\[6pt] & = -0.19\cdot \frac 1 {x^{1.01}} - 10\cdot \frac 1 {x^{7/5}}\\[6pt] & = -\frac{19}{100}\cdot \frac 1 {x^{1.01}} - \frac{10}{x^{7/5}}\\[6pt] & = -\frac{19}{100x^{1.01}} - \frac{10}{x^{7/5}} \end{align*} $$

Answer

$$\displaystyle f'(x) = -\frac{19}{100x^{1.01}} - \frac{10}{x^{7/5}}$$

Problem 9

Suppose $$f(x) = 4x^2 - 2\sqrt x+ \frac 6 x$$. Find $$f'(4)$$.

Step 1

Rewrite $$f$$ so each term is a power function.

$$ f(x) = 4x^2 - 2\sqrt x + \frac 6 x= 4x^2 - 2x^{1/2} + 6x^{-1} $$

Step 2

Differentiate each term using the power rule.

$$ \begin{align*} f(x) & = 4x^{\blue 2} - 2x^{\blue{1/2}}+ 6x^{\blue{-1}}\\[6pt] f'(x) & = 4\blue{(2)}x^{\blue 2 -1} - 2\blue{\left(\frac 1 2\right)}x^{\blue{\frac 1 2} - 1} + 6\blue{(-1)}x^{\blue{-1}-1}\\[6pt] & = 8x - x^{-1/2} - 6x^{-2} \end{align*} $$

Step 3 (Optional)

Rewrite using the original forms (radicals, fractions, etc) and rationalize any denominators that need it.

$$ \begin{align*} f'(x) & = 8x - x^{-1/2}-6x^{-2}\\[6pt] & = 8x - \frac 1 {x^{1/2}}-\frac 6 {x^2}\\[6pt] & = 8x - \frac 1 {\sqrt x}-\frac 6 {x^2}\\[6pt] & = 8x - \frac{\sqrt x} x -\frac 6 {x^2} \end{align*} $$

Step 4

Evaluate the derivative at $$x = 4$$

$$ \begin{align*} f'(4) & = 8(4) - \frac{\sqrt 4} 4 -\frac 6 {(4)^2}\\[6pt] & = 32 - \frac 2 4 -\frac 6 {16}\\[6pt] & = 32 - \frac 1 2 -\frac 3 8\\[6pt] & = \frac{256} 8 - \frac 4 8 -\frac 3 8\\[6pt] & = \frac{249} 8 \end{align*} $$

Answer

$$ \displaystyle f'(4) = \frac{249} 8 $$

Problem 10

Suppose $$f(x) = \frac 8 {\sqrt[3] x} - 7x^{23} + x^{-99}$$. Find $$f'(x)$$.

Step 1

Rewrite the function so each term is a power function.

$$ f(x) = \frac 8 {\sqrt[3] x} - 7x^{23} + x^{-99} = 8x^{-1/3} - 7x^{23} + x^{-99} $$

Step 2

Differentiate each term using the power rule.

$$ \begin{align*} f(x) & = 8x^{\blue{-1/3}} - 7x^{\blue{23}} + x^{\blue{-99}}\\[6pt] f'(x) & = 8\blue{\left(-\frac 1 3\right)}x^{\blue{-\frac 1 3} -1 } - 7\blue{(23)}x^{\blue{23}-1} + \blue{(-99)}x^{\blue{-99}-1}\\[6pt] & = -\frac 8 3 x^{-4/3} - 161x^{22} - 99x^{-100} \end{align*} $$

Step 3 (Optional)

Rewrite the derivative using radical notation and rationalize denominators.

$$ \begin{align*} f'(x) & = -\frac 8 3 x^{-4/3} - 161x^{22} - 99x^{-100}\\[6pt] & = -\frac 8 3 \cdot \frac 1 {x^{4/3}} - 161x^{22} - 99x^{-100}\\[6pt] & = -\frac 8 {3\sqrt[3]{x^4}} - 161x^{22}-99x^{-100}\\[6pt] & = -\frac 8 {3x\sqrt[3] x} - 161x^{22}-99x^{-100}\\[6pt] & = -\frac{8\,\sqrt[3]{x^2}} {3x^2} - 161x^{22} - 99x^{-100}\\[6pt] \end{align*} $$

Answer

$$ \displaystyle f'(x) = -\frac{8\,\sqrt[3]{x^2}} {3x^2} - 161x^{22} - 99x^{-100} $$

Problem 11

Use the power rule to find $$f'(x)$$ if $$f(x) = \left(5x - 4\right)^3$$.

Step 1

Expand the binomial.

$$ \begin{align*} f(x) & = \left(5x - 4\right)^3\\ & = (5x)^3 + 3(5x)^2(-4) + 3(5x)(-4)^2 + (-4)^3\\ & = 125x^3 -300x^2 +240x - 64 \end{align*} $$

Step 2

Differentiate each term using the power rule or basic rules.

$$ \begin{align*} f(x) & = 125x^{\blue 3} -300x^{\blue 2} +240\red x - \red{64}\\[6pt] f'(x) & = 125\blue{(3)}x^{\blue 3 - 1} - 300\blue{(2)}x^{\blue 2 -1} + 240\red{(1)} - \red 0\\[6pt] & = 375x^2 - 600x + 240 \end{align*} $$

Answer

$$f'(x) = 375x^2 - 600x + 240$$

Problem 12

Use the power rule to find $$f'(x)$$ if $$f(x) = -8\left(\sqrt x - 3x\right)^2$$.

Step 1

Write each term as a power function.

$$ f(x) = -8\left(\sqrt x - 3x\right)^2 = -8\left(x^{1/2} - 3x\right)^2 $$

Step 2

Expand the binomial.

$$ \begin{align*} f(x) & = -8\left(x^{1/2} - 3x\right)^2\\[6pt] & = -8\left(x - 6x(x^{1/2}) + 9x^2\right)\\[6pt] & = -8\left(x - 6x^{3/2} + 9x^2\right)\\[6pt] & = -8\left(-6x^{3/2} + 9x^2 + x\right)\\[6pt] & = 8\left(6x^{3/2} - 9x^2 - x\right) \end{align*} $$

Step 3

Differentiate each term using the power rule or a basic rule.

$$ \begin{align*} f(x) & = 8\left(6x^{\blue{3/2}} - 9x^{\blue 2} - \red x\right)\\[6pt] f'(x) & = 8\left(6\blue{\left(\frac 3 2\right)}x^{\blue{3/2} - 1} - 9\blue{(2)}x^{\blue 2 - 1} - \red 1\right)\\[6pt] f'(x) & = 8\left(9x^{1/2} - 18x - 1\right) \end{align*} $$

Step 4 (Optional)

Rewrite the first term using radical notation.

$$ f'(x) = 8\left(9x^{1/2} - 18x - 1\right) = 8\left(9\sqrt x - 18x - 1\right) $$

Answer

$$ f'(x) = 8\left(9\sqrt x - 18x - 1\right) $$

Problem 13

Suppose $$f(x) = \frac{3x}{\sqrt[6] x} - x\sqrt x$$. Find $$f'(x)$$.

Step 1

Convert each term to power function forms, then simplify each term.

$$ \begin{align*} f(x) & = \frac{3x}{\sqrt[6] x} - x\sqrt x\\[6pt] & = \frac{3x}{x^{1/6}} - x\cdot x^{1/2}\\[6pt] & = 3x^{5/6} - x^{3/2} \end{align*} $$

Step 2

Differentiate each term using the power rule.

$$ \begin{align*} f(x) & = 3x^{\blue{5/6}} - x^{\red{3/2}}\\[6pt] f'(x) & = 3\blue{\left(\frac 5 6\right)}x^{\blue{\frac 5 6} - 1} - \red{\left(\frac 3 2\right)}x^{\red{\frac 3 2} - 1}\\[6pt] & = \frac 5 2x^{-1/6} - \frac 3 2 x^{1/2} \end{align*} $$

Step 3 (Optional)

Rewrite the derivative using radical notation. Rationalize where appropriate.

$$ \begin{align*} f'(x) & = \frac 5 2x^{-1/6} - \frac 3 2 x^{1/2}\\[6pt] & = \frac 5 2\cdot \frac 1 {x^{1/6}} - \frac 3 2\cdot \sqrt x\\[6pt] & = \frac 5 {2\sqrt[6] x} - \frac{3\sqrt x} 2\\[6pt] & = \frac{5\sqrt[6]{x^5}}{2x} - \frac{3\sqrt x} 2 \end{align*} $$

Answer

$$ \displaystyle f'(x) = \frac{5\sqrt[6]{x^5}}{2x} - \frac{3\sqrt x} 2 $$

Problem 14

Suppose $$f(x) = \sqrt[3] x\left(2x^2 + \sqrt[5] x\right)$$. Find $$f'(x)$$

Step 1

Rewrite the function so each term has a power function form.

$$ f(x) = \sqrt[3] x\left(2x^2 + \sqrt[5] x\right) = x^{1/3}\left(2x^2 + x^{1/5}\right) $$

Step 2

Distribute the $$x^{1/3}$$

$$ f(x) = x^{1/3}\left(2x^2 + x^{1/5}\right) = 2x^{7/5} + x^{8/15} $$

Step 3

Differentiate each term using the power rule.

$$ \begin{align*} f(x) & = 2x^{\blue{7/5}} + x^{\red{8/15}}\\[6pt] f'(x) & = 2\blue{\left(\frac 7 5\right)}x^{\blue{7/5}-1} + \red{\left(\frac 8 {15}\right)}x^{\red{8/15}-1}\\[6pt] & = \frac{14} 5x^{2/5} + \frac 8 {15}x^{-7/15} \end{align*} $$

Step 4 (Optional)

Rewrite the derivative using radical forms. Rationalize denominators as appropriate.

$$ \begin{align*} f'(x) & = \frac{14} 5x^{2/5} + \frac 8 {15}x^{-7/15}\\[6pt] & = \frac{14} 5\cdot \sqrt[5]{x^2} + \frac 8 {15}\cdot \frac 1 {x^{7/15}}\\[6pt] & = \frac{14\sqrt[5]{x^2}} 5 + \frac 8 {15}\cdot \frac 1 {\sqrt[15]{x^7}}\\[6pt] & = \frac{14\sqrt[5]{x^2}} 5 + \frac{8\sqrt[15]{x^8}} {15x} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{14\sqrt[5]{x^2}} 5 + \frac{8\sqrt[15]{x^8}} {15x}$$

Return to lesson
Download this web page as a pdf with answer key

back to How to Use the Basic Rules for Derivatives next to How to Use the Product Rule for Derivatives

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!