How to Use the Chain Rule for Derivatives. Visual Explanation with color coded examples and 20 practice problems

How to Use the Chain Rule for Derivatives

Quick Overview

  • The Chain Rule: If $$h(x) = f(g(x))$$ then $$h'(x) = f'(g(x))\cdot g'(x)$$.
  • You can think of the chain rule as telling you how to handle "stuff" inside another function. So if $$h(x) = f(\mbox{stuff})$$ then $$h'(x) = f'(\mbox{stuff})\cdot \frac d {dx}(\mbox{stuff})$$
  • That is, find the derivative of $$f$$, but keep the stuff inside the same. Then multiply by the derivative of the stuff.

Examples

Example 1

Suppose $$\displaystyle h(x) = \sin(x^2)$$. Find $$h'(x)$$.

Answer

$$h'(x) = 2x\cos(x^2)$$

Example 2

Suppose $$\displaystyle f(x) = \sqrt{x^3+2}$$. Find $$f'(x)$$.

Step 1

Write the square-root in exponent form.

$$ f(x) = (x^3+2)^{1/2} $$

Step 2

Use the power rule and the chain rule.

Step 3

Simplify $$f'$$.

$$ f'(x) = \frac 3 2 x^2 (x^3 + 2)^{-1/2} $$

Step 4

(Optional) Write the derivative in radical form.

$$ \begin{align*} f'(x) & = \frac 3 2 x^2 (x^3 + 2)^{-1/2}\\[6pt] & = \frac 3 2 x^2 \cdot \frac 1 {x^3 + 2)^{1/2}}\\[6pt] & = \frac 3 2 x^2 \cdot \frac 1 {\sqrt{x^3 + 2}}\\[6pt] & = \frac{3x^2}{2\sqrt{x^3+2}} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{3x^2}{2\sqrt{x^3+2}}$$.

Example 3

Use the chain rule to find $$\displaystyle \frac d {dx}\left(\sec x\right)$$.

Step 1

Rewrite the function in terms of the cosine.

$$ \sec x = \frac 1 {\cos x} = \big(\cos x\big)^{-1} $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} \frac d {dx}\left(\sec x\right) & = \frac d {dx}\left[(\cos x)^{-1}\right]\\[6pt] & = -1(\cos x)^{-2}\cdot (-\sin x)\\[6pt] & = -\frac 1 {\cos^2 x} \cdot (-\sin x)\\[6pt] & = \frac{\sin x}{\cos^2 x} \end{align*} $$

Step 3

Simplify by separating into two fractions and using trigonometric identities.

$$ \begin{align*} \frac d {dx}\left(\sec x\right) & = \frac{\sin x}{\cos^2 x}\\[6pt] & = \frac 1 {\cos x} \cdot \frac{\sin x}{\cos x}\\[6pt] & = \sec x \tan x \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\sec x\right) = \sec x \tan x$$

Example 4

Suppose $$f(x) = e^{-x^2}\sin(x^3)$$. Find $$f'(x)$$.

Notice that this function will require both the product rule and the chain rule.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{e^{-x^2}}\red{\sin(x^3)} $$

Step 2

Differentiate using the product rule.

Step 3

(Optional) Factor the derivative.

$$ \begin{align*} f'(x) & = -2x\blue{e^{-x^2}}\sin(x^3) + \blue{e^{-x^2}}\,3x^2\cos(x^3)\\[6pt] & = \blue{e^{-x^2}}\left(-2\red x\sin(x^3) + 3\red{x^2}\cos(x^3)\right)\\[6pt] & = \red xe^{-x^2}\left(-2\sin(x^3) + 3x\cos(x^3)\right)\\[6pt] & = xe^{-x^2}\left(3x\cos(x^3)-2\sin(x^3)\right) \end{align*} $$

Answer

$$\displaystyle f'(x) = xe^{-x^2}\left(3x\cos(x^3)-2\sin(x^3)\right)$$.

Example 5

Suppose $$f(x) = \sqrt{\cos(5x+1)}$$. Find $$f'(x)$$.

Notice that $$f$$ is a composition of three functions. This means we will need to use the chain rule twice.

Step 1

Write the square-root as an exponent.

$$ f(x) = [\cos(5x+1)]^{1/2} $$

Step 2

Use the power rule and the chain rule for the square-root.

$$ f'(x) = \frac 1 2[\blue{\cos(5x + 1)}]^{-1/2}\cdot \frac d {dx}\left(\blue{\cos(5x+1)}\right) $$

Step 3

Find the derivative of the cosine.

$$ f'(x) = \frac 1 2[\cos(5x + 1)]^{-1/2}\cdot \left(-\sin(\red{5x+1)}\right)\cdot \frac d {dx}(\red{5x+1}) $$

Step 4

Find the derivative of the linear function.

$$ f'(x) = \frac 1 2[\cos(5x + 1)]^{-1/2}\cdot \left(-\sin(5x+1)\right)\cdot 5 $$

Step 5

Simplify the derivative.

$$ \begin{align*}% f'(x) & = \frac 1 2[\cos(5x + 1)]^{-1/2}\cdot \left(-\sin(5x+1)\right)\cdot 5\\[6pt] & = -\frac 5 2[\cos(5x + 1)]^{-1/2}\cdot \left(\sin(5x+1)\right)\\[6pt] & = -\frac 5 2\cdot \frac 1 {[\cos(5x + 1)]^{1/2}}\cdot \left(\sin(5x+1)\right)\\[6pt] &= -\frac{5\sin(5x+1)}{2\sqrt{\cos(5x+1)}} \end{align*} $$

Answer

$$\displaystyle -\frac{5\sin(5x+1)}{2\sqrt{\cos(5x+1)}}$$.

Continue to Practice Problems
Download this web page as a pdf with answer key

back to How to Use the Quotient Rule next to How to Find Derivatives of Exponential Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!