How to Differentiate Trigonometric Functions:
Practice Problems

Download this web page as a pdf with answer key
Problem 1

Suppose $$f(x) = \sin\left(x^{4/3}\right)$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

\begin{align*} f'(x) & = \cos\left(x^{4/3}\right)\cdot \frac d {dx}\left(x^{4/3}\right)\\[6pt] & = \cos\left(x^{4/3}\right)\cdot \frac 4 3 x^{1/3} \end{align*}

Step 2

Simplify.

$$f'(x) = \frac 4 3 x^{1/3}\cos\left(x^{4/3}\right)$$

Answer

$$\displaystyle f'(x) = \frac 4 3 x^{1/3}\cos\left(x^{4/3}\right)$$

Problem 2

Suppose $$f(x) = \cos\left(3-6x^7\right)$$. Find $$f'(x)$$.

Step 1

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = -\sin\left(3-6x^7\right)\cdot \frac d {dx}\left(3-6x^7\right)\\[6pt] & = -\sin\left(3-6x^7\right)\cdot (-42x^6)\\[6pt] & = 42x^6\sin\left(3-6x^7\right) \end{align*} $$

Answer

$$\displaystyle f'(x) = 42x^6\sin\left(3-6x^7\right)$$

Problem 3

Suppose $$f(x) = \tan(\sqrt x)$$. Find $$f'(x)$$.

Step 1

Rewrite the function so the square-root is expressed in exponent form.

$$ f(x) = \tan\left(x^{1/2}\right) $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = \sec^2\left(x^{1/2}\right)\cdot \frac d {dx}\left(x^{1/2}\right)\\[6pt] & = \sec^2\left(x^{1/2}\right)\cdot \frac 1 2 x^{-1/2} \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} f'(x) & = \sec^2\left(x^{1/2}\right)\cdot \frac 1 2 x^{-1/2}\\[6pt] & = \sec^2\left(x^{1/2}\right)\cdot \frac 1 2 \cdot\frac 1 {x^{1/2}}\\[6pt] & = \sec^2\left(\sqrt x\right)\cdot \frac 1 {2\sqrt x}\\[6pt] & = \frac{\sec^2\left(\sqrt x\right)}{2\sqrt x} \end{align*} $$

Step 4

(Optional) Rationalize the denominator.

$$ f'(x) = \frac{\sqrt x\,\sec^2\left(\sqrt x\right)}{2x} $$

Answer

$$ \displaystyle f'(x) = \frac{\sqrt x\,\sec^2\left(\sqrt x\right)}{2x} $$

Problem 4

Find $$\displaystyle \frac d {dx}\left(\cot 7x^5\right)$$.

Step 1

Differentiate using the chain rule.

$$ \begin{align*} \frac d {dx}\left(\cot 7x^5\right) & = -\csc^2 7x^5 \cdot \frac d {dx}\left(7x^5\right)\\[6pt] & = -\csc^2 7x^5 \cdot 35x^4\\[6pt] & = -35x^4\csc^2 7x^5 \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\cot 7x^5\right) = -35x^4\csc^2 7x^5$$

Problem 5

Find $$\displaystyle \frac d {dx}\left[\sec\left(\frac 1 x\right)\right]$$.

Step 1

Rewrite the function so the $$\frac 1 x$$ is in exponent form.

$$ \frac d {dx}\left[\sec\left(\frac 1 x\right)\right] = \frac d {dx}\left[\sec\left(x^{-1}\right)\right] $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} \frac d {dx}\left[\sec\left(x^{-1}\right)\right] & = \sec\left(x^{-1}\right)\tan\left(x^{-1}\right)\cdot \frac d {dx}\left(x^{-1}\right)\\[6pt] & = \sec\left(x^{-1}\right)\tan\left(x^{-1}\right)\cdot \left(-x^{-2}\right) \end{align*} $$

Step 3

Simplify.

$$ \begin{align*} \frac d {dx}\left[\sec\left(x^{-1}\right)\right] & = \sec\left(x^{-1}\right)\tan\left(x^{-1}\right)\cdot \left(-x^{-2}\right)\\[6pt] & = -x^{-2}\sec\left(x^{-1}\right)\tan\left(x^{-1}\right)\\[6pt] & = -\frac 1 {x^2}\sec\left(\frac 1 x\right)\tan\left(\frac 1 x\right) \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left[\sec\left(\frac 1 x\right)\right] = -\frac 1 {x^2}\sec\left(\frac 1 x\right)\tan\left(\frac 1 x\right)$$

Problem 6

Suppose $$\displaystyle f(x) = \csc\left(\frac \pi 2 x^2\right)$$. Find $$f'(\sqrt 3)$$

Step 1

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = -\csc\left(\frac \pi 2 x^2\right)\cot\left(\frac \pi 2 x^2\right)\cdot \frac d {dx}\left(\frac \pi 2 x^2\right)\\[6pt] & = -\csc\left(\frac \pi 2 x^2\right)\cot\left(\frac \pi 2 x^2\right)\cdot \left(\frac \pi 2 \cdot 2x\right)\\[6pt] & = -\csc\left(\frac \pi 2 x^2\right)\cot\left(\frac \pi 2 x^2\right)\cdot \left(\pi x\right)\\[6pt] & = -\pi x\csc\left(\frac \pi 2 x^2\right)\cot\left(\frac \pi 2 x^2\right) \end{align*} $$

Step 2

Evaluate $$f'(\sqrt 3)$$.

$$ \begin{align*} f'(\sqrt 3) & = -\pi \sqrt 3\,\csc\left(\frac \pi 2 (\sqrt 3)^2\right)\cot\left(\frac \pi 2 (\sqrt 3)^2\right)\\[6pt] & = -\pi \sqrt 3\,\csc\left(\frac{3\pi} 2\right)\cot\left(\frac{3\pi} 2\right)\\[6pt] & = -\pi \sqrt 3\,(-1)(0)\\[6pt] & = 0 \end{align*} $$

Answer

$$ \displaystyle f'\left(\sqrt 3\right) = 0 $$

Problem 7

Suppose $$\displaystyle f(x) = \csc 2x \cot 2x $$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\csc 2x }\,\red{\cot 2x } $$

Step 2

Differentiate using the product rule. Simplify.

$$ \begin{align*} f'(x) & = \blue{-2\csc 2x \cot 2x }\cot 2x + \csc 2x \red{(-2\csc^2 2x )}\\[6pt] & = -2\csc 2x \cot 2x \cot 2x -2\csc 2x \csc^2 2x \\[6pt] & = -2\csc 2x \cot^2 2x -2\csc^3 2x \end{align*} $$

Step 3

Simplify with factoring and trig identitites.

$$ \begin{align*} f'(x) & = \blue{-2}\csc 2x \cot^2 2x \blue{-2}\csc^3 2x\\[6pt] & = \blue{-2}\left(\red{\csc 2x}\cot^2 2x + \red{\csc^3 2x}\right)\\[6pt] & = -2\red{\csc 2x}\left(\cot^2 2x + \csc^2 2x\right)\\[6pt] & = -2\csc 2x\left(\csc^2 2x - 1 + \csc^2 2x\right)\\[6pt] & = -2\csc 2x\left(2\csc^2 2x - 1\right) \end{align*} $$

Answer

$$f'(x) = -2\csc 2x\left(2\csc^2 2x - 1\right)$$

Problem 8

Suppose $$\displaystyle f(x) = \sec \pi x\tan \pi x$$. Find $$f'\left(\frac 1 4\right)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{\sec \pi x }\,\red{\tan \pi x} $$

Step 2

Differentiate using the product rule. Simplify.

$$ \begin{align*} f'(x) & = \blue{\pi\sec \pi x\tan \pi x}\tan \pi x + \sec \pi x\cdot \red{\pi \sec^2 \pi x}\\[6pt] & = \pi\sec \pi x\tan^2 \pi x + \pi\sec^3 \pi x \end{align*} $$

Step 3

Evaluate $$f'\left(\frac 1 4\right)$$

$$ \begin{align*} f'\left(\frac 1 4\right) & = \pi\sec\left(\pi\cdot \frac 1 4\right)\tan^2\left(\pi\cdot \frac 1 4\right) + \pi\sec^3\left(\pi\cdot \frac 1 4\right)\\[6pt] & = \pi\sec \frac \pi 4\cdot\tan^2 \frac \pi 4 + \pi\sec^3 \frac \pi 4\\[6pt] & = \pi(\sqrt 2)(1)^2 + \pi(\sqrt 2)^3\\[6pt] & = \pi\sqrt 2 + 2\pi\sqrt 2\\[6pt] & = 3\pi\sqrt 2 \end{align*} $$

Answer

$$\displaystyle f'\left(\frac 1 4\right) = 3\pi\sqrt 2$$

Problem 9

Find $$\displaystyle \frac d {dx}\left(\frac{\sin x} x\right)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} \frac d {dx}\left(\frac{\sin x} x\right) & = \frac{x\blue{\cos x} - \blue{\sin x}\cdot 1}{x^2}\\[6pt] & = \frac{x\cos x - \sin x}{x^2} \end{align*} $$

Answer

$$ \displaystyle \frac d {dx}\left(\frac{\sin x} x\right) = \frac{x\cos x - \sin x}{x^2} $$

Problem 10

Suppose $$\displaystyle f(x) = \frac{1-\cos x} x$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} f'(x) & = \frac{x\,\blue{\sin x} - \blue{(1-\cos x)}\cdot 1}{x^2}\\[6pt] & = \frac{x\sin x - 1+\cos x}{x^2}\\[6pt] & = \frac{x\sin x+\cos x - 1}{x^2} \end{align*} $$

Answer

$$ \displaystyle f'(x) = \frac{x\sin x+\cos x - 1}{x^2} $$

Problem 11

Find $$\displaystyle \frac d {dx}\left(\sec^3 x\right)$$.

Step 1

Write the function so that it is easier to see the secant being cubed.

$$ \frac d {dx}\left(\sec^3 x\right) = \frac d {dx}\left[(\sec x)^3\right] $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} \frac d {dx}\left[(\sec x)^3\right] & = 3(\sec x)^2\cdot \frac d {dx}\left(\sec x\right)\\[6pt] & = 3(\sec x)^2\cdot \sec x\tan x\\[6pt] & = 3\sec^3 x\tan x \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\sec^3 x\right) = 3\sec^3 x\tan x$$

Problem 12

Suppose $$f(x) = \tan^3 7x\sec^2 7x$$. Find $$f'\left(\frac\pi 6\right)$$.

Step 1

Rewrite the function so the powers are more explicit.

$$ f(x) = (\tan 7x)^3(\sec 7x)^2 $$

Step 2

Identify the factors in the function.

$$ f(x) = \blue{(\tan 7x)^3}\red{(\sec 7x)^2} $$

Step 3

Differentiate using the product rule. Note that each factor requires the chain rule to differentiate.

$$ \begin{align*} f'(x) & = \blue{3(\tan 7x)^2\cdot \frac d {dx}\left(\tan 7x\right)}(\sec 7x)^2 + (\tan 7x)^3\red{\cdot 2(\sec 7x)^1\cdot \frac d {dx}\left(\sec 7x\right)}\\[6pt] & = \blue{3(\tan 7x)^2\left(7\sec^2 7x\right)}(\sec 7x)^2 + (\tan 7x)^3\red{\cdot 2(\sec 7x)\left(7\sec 7x\tan 7x\right)}\\[6pt] & = 21\tan^2 7x\sec^4 7x + 14\tan^4 7x\sec^2 7x \end{align*} $$

Step 4

Simplify by factoring.

$$ \begin{align*} f'(x) & = 21\blue{\tan^2 7x}\sec^4 7x + 14\blue{\tan^4 7x}\sec^2 7x\\[6pt] & = \blue{\tan^2 7x}\left(21\red{\sec^4 7x} + 14\tan^2 7x\red{\sec^2 7x}\right)\\[6pt] & = \tan^2 7x\,\red{\sec^2 7x}\left(21\sec^2 7x + 14\tan^2 7x\right)\\[6pt] & = 7\tan^2 7x\sec^2 7x\left(3\sec^2 7x + 2\tan^2 7x\right) \end{align*} $$

Step 5

Evaluate $$f'\left(\frac\pi 6\right)$$.

$$ \begin{align*} f'\left(\frac\pi 6\right) & = 7\tan^2\left(7\cdot \frac\pi 6\right)\sec^2\left(7\cdot \frac\pi 6\right)\left[3\sec^2\left(7\cdot \frac\pi 6\right) + 2\tan^2 \left(7\cdot \frac\pi 6\right)\right]\\[6pt] & = 7\tan^2\left(\frac{7\pi} 6\right)\sec^2\left(\frac{7\pi} 6\right)\left[3\sec^2\left(\frac{7\pi} 6\right) + 2\tan^2 \left(\frac{7\pi} 6\right)\right]\\[6pt] & = 7\left(\frac{\sqrt 3} 3\right)^2\left(\frac{2\sqrt 3} 3\right)^2\left[3\left(\frac{2\sqrt 3} 3\right)^2 + 2\left(\frac{\sqrt 3} 3\right)^2\right]\\[6pt] & = 7\left(\frac 1 3\right)\left(\frac 4 3\right)\left[3\left(\frac 4 3\right) + 2\left(\frac 1 3\right)\right]\\[6pt] & = \frac{392}{27} \end{align*} $$

Answer

$$ \displaystyle f'\left(\frac\pi 6\right) = \frac{392}{27} $$

Problem 13

Find $$\displaystyle \frac d {dx}\left(\sqrt{1 - \sin 3x}\right)$$.

Step 1

Rewrite the function so the square-root is in exponent notation.

$$ \frac d {dx}\left(\sqrt{1 - \sin 3x}\right) = \frac d {dx}\left((1 - \sin 3x)^{1/2}\right) $$

Step 2

Differentiate using the chain rule. Simplify your result.

$$ \begin{align*} \frac d {dx}\left((1 - \sin 3x)^{1/2}\right) & = \frac 1 2(1-\sin 3x)^{-1/2}\cdot \frac d {dx}\left(1 - \sin 3x\right)\\[6pt] & = \frac 1 2(1-\sin 3x)^{-1/2}\cdot (-3\cos 3x)\\[6pt] & = -\frac 3 2(1-\sin 3x)^{-1/2}\cos 3x\\[6pt] & = -\frac 3 2\cdot \frac 1 {\sqrt{1-\sin 3x}}\cdot \cos 3x\\[6pt] & = -\frac{3\cos 3x}{2\sqrt{1-\sin 3x}} \end{align*} $$

Answer

$$ \displaystyle \frac d {dx}\left(\sqrt{1 - \sin 3x}\right)= -\frac{3\cos 3x}{2\sqrt{1-\sin 3x}} $$

Problem 14

Suppose $$f(x) = e^{\tan x}$$. Find $$f'\left(\frac\pi 4\right)$$

Step 1

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = e^{\tan x}\cdot \frac d {dx}\left(\tan x\right)\\[6pt] & = e^{\tan x}\cdot \sec^2 x \end{align*} $$

Step 2

Evaluate $$f'\left(\frac\pi 4\right)$$.

$$ \begin{align*} f'\left(\frac\pi 4\right) & = e^{\tan \frac \pi 4}\cdot \sec^2 \frac \pi 4\\[6pt] & = e^1\cdot (\sqrt 2)^2\\[6pt] & = 2e^1 \end{align*} $$

Answer

$$f'\left(\frac\pi 4\right) = 2e$$

Return to lesson
Download this web page as a pdf with answer key

back to How to Differentiate Exponential Functions next to How to Differentiate Hyperbolic Trig Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!