Mathwarehouse Logo

Please disable adblock in order to continue browsing our website.

Unfortunately, in the last year, adblock has now begun disabling almost all images from loading on our site, which has lead to mathwarehouse becoming unusable for adlbock users.

Factoring Sums of Cubes
Practice Problems

Download this web page as a pdf with answer key
Problem 1

Factor $$x^3 + 8$$.

Step 1

Identify $$\blue a$$ and $$\red b$$.

Since $$\blue a$$ is the cube root of the first term, $$a = \sqrt[3]{x^3} = \blue x$$.

Similarly, since $$\red b$$ is the cube root of the second term, $$b = \sqrt[3] 8 = \red 2$$

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \blue b^2)\\ x^3 + 8 & = (\blue x + \red 2)(\blue x^2 - \blue x\cdot \red 2 + \red 2^2)\\ & = (x + 2)(x^2 - 2x +4) \end{align*} $$

Answer

$$ x^3 + 8 = (x + 2)(x^2 - 2x +4) $$

Problem 2

Factor $$x^3 + 64$$.

Step 1

Identify $$\blue a$$ and $$\red b$$.

Since $$\blue a$$ is the cube root of the first term, $$a = \sqrt[3]{x^3} = \blue x$$.

Likewise, since $$\red b$$ is the cube root of the second term, $$b = \sqrt[3]{64} = \red 4$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ x^3 + 64 & = (\blue x + \red 4)(\blue x^2 - \blue x \cdot \red 4 + \blue 4^2)\\ & = (x + 4)(x^2 - 4x + 16) \end{align*} $$

Answer

$$ x^3 + 64 = (x + 4)(x^2 - 4x + 16) $$

Problem 3

Factor $$8x^3 + 27$$.

Step 1

Identify $$\blue a$$ and $$ \red b $$ .

Since $$\blue a$$ is the cube root of the first term, $$a = \sqrt[3]{8x^3} = \blue { 2x} $$.

Likewise, since $$\red b$$ is the cube root of the second term, $$b = \sqrt[3]{27} = \red 3$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ 8x^3 + 27 & = (\blue{2x} + \red 3)[\blue{(2x)}^2 - \blue{(2x)}\red{(3)} + \red 3^2]\\ & = (2x + 3)(4x^2 - 6x + 9) \end{align*} $$

Answer

$$ 8x^3 + 27 = (2x + 3)(4x^2 - 6x + 9) $$

Problem 4

Factor $$64x^3 + 125$$.

Step 1

Identify $$a$$ and $$b$$.

Since $$a$$ is the cube root of the first term, $$a = \sqrt[3]{64x^3} = 4x$$.

Likewise, since $$b$$ is the cube root of the second term, $$b = \sqrt[3]{125} = 5$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ 64x^3 + 125 & = (\blue{4x} + \red 5)[\blue{(4x)}^2 - \blue{(4x)}\red{(5)} + \red 5^2]\\ & = (4x + 5)(16x^2 - 20x + 25) \end{align*} $$

Answer

$$ (4x + 5)(16x^2 - 20x + 25) $$

Problem 5

Factor $$x^3 + y^3$$.

Step 1

Identify $$a$$ and $$b$$.

Since $$a$$ is the cube root of the first term, $$a = \sqrt[3]{x^3} = x$$.

Likewise, since $$b$$ is the cube root of the second term, $$b = \sqrt[3]{y^3} = y$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ x^3 + y^3 & = (\blue x + \red y)(\blue x^2 - \blue x \red y + \red y^2) \end{align*} $$

Answer

$$ x^3 + y^3 = (x + y)(x^2 - xy + y^2) $$

Problem 6

Factor $$216x^3 + 125y^3$$.

Step 1

Identify $$a$$ and $$b$$.

Since $$a$$ is the cube root of the first term, $$a = \sqrt[3]{216x^3} = 6x$$.

Likewise, since $$b$$ is the cube root of the second term, $$b = \sqrt[3]{125y^3} = 5y$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ 216x^3 + 125y^3 & = (\blue{6x} + \red{5y})[\blue{(6x)}^2 - \blue{(6x)}\red{(5y)} + \red{(5y)}^2]\\ & = (6x + 5y)(36x^2 - 30xy + 25y^2) \end{align*} $$

Answer

$$ 216x^3 + 125y^3 = (6x + 5y)(36x^2 - 30xy + 25y^2) $$

Sum Of Cubes Calculator

Problem 7

Factor $$8x^6 + 27y^9$$ as a sum of cubes.

Step 1

Identify $$a$$ and $$b$$.

Since $$a$$ is the cube root of the first term, $$a = \sqrt[3]{8x^6} = 2x^2$$.

Likewise, since $$b$$ is the cube root of the second term, $$b = \sqrt[3]{27y^9} = 3y^3$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ 8x^6 + 27y^9 & = (\blue{2x^2} + \red{3y^3})[\blue{(2x^2)}^2 - \blue{(2x^2)}\red{(3y^3)} + \red{(3y^3)}^2]\\ & = (2x^2 + 3y^3)(4x^4 - 6x^2y^3 + 9y^6) \end{align*} $$

Answer

$$ 8x^6 + 27y^9 = (2x^2 + 3y^3)(4x^2 - 6x^2y^3 + 9y^6) $$

Problem 8

Factor $$1000x^{3/2} + 343y^{6/5}$$ as a difference of cubes.

Step 1

Identify $$a$$ and $$b$$.

Since $$a$$ is the cube root of the first term, $$a = \sqrt[3]{1000x^{3/2}} = (1000x^{3/2})^{1/3} = 10x^{1/2}$$.

Likewise, since $$b$$ is the cube root of the second term, $$b = \sqrt[3]{343y^{6/5}} = (343y^{6/5})^{1/3} = 7y^{2/5}$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ 1000x^{3/2} + 343y^{6/5} & = \left(\blue{10x^{1/2}} + \red{7y^{2/5}}\right)\left[\blue{\left(10x^{1/2}\right)}^2 - \blue{\left(10x^{1/2}\right)}\red{\left(7y^{2/5}\right)} + \red{\left(7y^{2/5}\right)}^2\right]\\ & = \left(10x^{1/2} + 7y^{2/5}\right)\left(100x - 70x^{1/2}y^{2/5} + 49y^{4/5}\right) \end{align*} $$

Answer

$$ 1000x^{3/2} + 343y^{6/5} = \left(10x^{1/2} + 7y^{2/5}\right)\left(100x - 70x^{1/2}y^{2/5} + 49y^{4/5}\right) $$

Problem 9

Factor $$3x^2 + 7y^4$$ as a sum of cubes.

Step 1

Identify $$a$$ and $$b$$.

Since $$a$$ is the cube root of the first term, $$a = \sqrt[3]{3x^2}$$.

Likewise, since $$b$$ is the cube root of the second term, $$b = \sqrt[3]{7y^4}$$.

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ 3x^2 + 7y^4 & = \left(\blue{\sqrt[3]{3x^2}} + \red{\sqrt[3]{7y^4}}\right)\left[\blue{\left(\sqrt[3]{3x^2}\right)}^2 - \blue{\left(\sqrt[3]{3x^2}\right)}\red{\left(\sqrt[3]{7y^4}\right)} + \blue{\left(\sqrt[3]{7y^4}\right)}^2\right]\\ & = \left(\sqrt[3] 3\,x^{2/3} + \sqrt[3] 7\,y^{4/3}\right)\left[\left(\sqrt[3] 3\,x^{2/3}\right)^2 - \sqrt[3]{3x^2\cdot 7y^4} + \left(\sqrt[3]7\,y^{4/3}\right)^2\right]\\ & = \left(\sqrt[3] 3\,x^{2/3} + \sqrt[3] 7\,y^{4/3}\right)\left[\left(\sqrt[3] 3\,x^{2/3}\right)^2 - \sqrt[3]{21}\,x^{2/3}y^{4/3} + \left(\sqrt[3]7\,y^{4/3}\right)^2\right]\\ & = \left(\sqrt[3] 3\,x^{2/3} + \sqrt[3] 7\,y^{4/3}\right)\left(\sqrt[3] 9\,x^{4/3} - \sqrt[3]{21}\,x^{2/3}y^{4/3} + \sqrt[3]{49}\,y^{8/3}\right) \end{align*} $$

Answer

$$ 3x^2 + 7y^4 = \left(\sqrt[3] 3\,x^{2/3} + \sqrt[3] 7\,y^{4/3}\right)\left(\sqrt[3] 9\,x^{4/3} - \sqrt[3]{21}\,x^{2/3}y^{4/3} + \sqrt[3]{49}\,y^{8/3}\right) $$

Problem 10

Factor $$24x^{21} + 375y^{15}$$ as a sum of cubes.

Step 1

Identify $$a$$ and $$b$$.

Since $$a$$ is the cube root of the first term.

$$ \begin{align*} a & = \sqrt[3]{24x^{21}}\\ & = \sqrt[3]{8\cdot 3 x^{21}}\\ & = 2\sqrt[3]{3 x^{21}}\\ & = 2\sqrt[3]3\,x^7 \end{align*} $$

Likewise, since $$b$$ is the cube root of the second term,

$$ \begin{align*} b & = \sqrt[3]{375y^{15}}\\ & = \sqrt[3]{125\cdot 3y^{15}}\\ & = 5\sqrt[3] 3\, y^5 \end{align*} $$

Step 2

Write down the factored form.

$$ \begin{align*} a^3 + b^3 & = (\blue a + \red b)(\blue a^2 - \blue a \red b + \red b^2)\\ 24x^{21} + 375y^{15} & = \left(\blue{2\sqrt[3]3\,x^7} + \red{5\sqrt[3] 3\, y^5}\right)\left[\blue{\left(2\sqrt[3]3\,x^7\right)}^2 - \blue{\left(2\sqrt[3]3\,x^7\right)}\red{\left(5\sqrt[3] 3\, y^5\right)} + \blue{\left(5\sqrt[3] 3\, y^5\right)}^2\right]\\ & = \left(2\sqrt[3]3\,x^7 + 5\sqrt[3] 3\, y^5\right)\left(4\sqrt[3]9\,x^{14} - 10\sqrt[3]9\,x^7y^5 + 25\sqrt[3] 9\, y^{10}\right)\\ & = \sqrt[3] 3\left(2x^7 + 5y^5\right)\cdot \sqrt[3] 9 \left(4x^{14} - 10x^7y^5 + 25y^{10}\right)\\ & = \sqrt[3]{27}\left(2x^7 + 5y^5\right)\left(4x^{14} - 10x^7y^5 + 25y^{10}\right)\\ & = 3\left(2x^7 + 5y^5\right)\left(4x^{14} - 10x^7y^5 + 25y^{10}\right) \end{align*} $$

Answer

$$ 24x^{21} + 375y^{15} = 3\left(2x^7 + 5y^5\right)\left(4x^{14} - 10x^7y^5 + 25y^{10}\right) $$

Return to lesson
Download this web page as a pdf with answer key
Back to Algebra Next to Factoring Differences of Cubes