The Focus of an Ellipse

Lesson online @ www.mathwarehouse.com/ellipse/focus-of-ellipse.php

What is C in the equation below?

What are the coordinates of the two foci?

What is C?
What are the coordinates of the foci?(_,_) (_,_)

C:____

C:____

Foci (,) & (,)

Part II. Determine the value of c and the coordinates of the foci for each ellipse below.

1)
$$25x^2 + 9y^2 = 225$$

$$2) 100x^2 + 36y^2 = 3,600$$

$$3) 25X^2 + 4y^2 = 100$$

4)
$$64X^2 + 9y^2 = 576$$

$$5) 25X^2 + 36y^2 = 900$$

6)
$$625X^2 + 576y^2 = 360,000$$

Analysis

How many foci does a circle have? Use the example of the circle below to help you find the answer

$$\frac{X^2 + Y^2 = 9}{X^2 + Y^2}$$

$$7) 5X^2 + 20y^2 = 100$$

8)
$$2X^2 + 3y^2 = 6$$

New York Math B Regents Problems involving Ellipses:

1. The accompanying diagram shows the elliptical orbit of a planet. The foci of the elliptical orbit are F_1 and F_2 .

String

If a, b, and c are all positive and $a \neq b \neq c$, which equation could represent the path of the planet?

$$(1) \ ax^2 - by^2 = c^2$$

(3)
$$y = ax^2 + c^2$$

(2)
$$ax^2 + by^2 = c^2$$

(3)
$$y = ax^2 + c^2$$

(4) $x^2 + y^2 = c^2$

2. The accompanying diagram shows the construction of a model of an elliptical orbit of a planet traveling around a star. Point P and the center of the star represent the foci of the orbit.

Which equation could represent the relation shown?

$$(1) \ \frac{x^2}{81} + \frac{y^2}{225} = 1$$

(3)
$$\frac{x^2}{15} + \frac{y^2}{9} = 1$$

(2)
$$\frac{x^2}{225} + \frac{y^2}{81} = 1$$

(4)
$$\frac{x^2}{15} - \frac{y^2}{9} = 1$$

(1)
$$3x^2 + 10y^2 = 288,000$$

(3)
$$3x + 10y = 288,000$$

(2)
$$3x^2 - 10y^2 = 288,000$$

$$(4) \ 30xy = 288,000$$

4. A commercial artist plans to include an ellipse in a design and wants the length of the horizontal axis to equal 10 and the length of the vertical axis to equal 6. Which equation could represent this ellipse?

(1)
$$9x^2 + 25y^2 = 225$$
 (3) $x^2 + y^2 = 100$

$$(3) x^2 + y^2 = 100$$

(2)
$$9x^2 - 25y^2 = 225$$
 (4) $3y = 20x^2$

(4)
$$3y = 20x^2$$

5. An architect is designing a building to include an arch in the shape of a semi-ellipse (half an ellipse), such that the width of the arch is 20 feet and the height of the arch is 8 feet, as shown in the accompanying diagram.

Which equation models this arch?

$$(1) \ \frac{x^2}{100} + \frac{y^2}{64} = 1$$

(3)
$$\frac{x^2}{64} + \frac{y^2}{100} = 1$$
(4)
$$\frac{x^2}{64} + \frac{y^2}{400} = 1$$

$$(2) \ \frac{x^2}{400} + \frac{y^2}{64} = 1$$

$$(4) \ \frac{x^2}{64} + \frac{y^2}{400} = 1$$

Aside from the NYS Math B Regent's questions, this worksheet is copyrighted by Commercial Use Prohibited www.mathwarehouse.com. All Rights Reserved

TEACHERS: Feel free to make copies of this worksheet for the sole purpose of classroom use. ENJOY!!! (Redistribution in any other fashion is prohibited)