Hypotenuse Leg Theorem Worksheet and Activity

URL on the Hypotenuse Leg Theorem
http://www.mathwarehouse.com/geometry/congruent triangles/hypotenuse-legtheorem.php
© www.mathwarehouse.com
All Rights Reserved
Commercial Use Prohibited
TEACHERS: Feel free to make copies of this worksheet for the sole purpose of use in your own classroom. ENJOY!!! Redistribution in any other form is prohibited.

More Math worksheets and activities available at
www.mathwarehouse.com/classroom/worksheets-and-activities.php

Play Math Games at TheMathGames.com

Warm Up \rightarrow

1) How long is $\overline{\mathrm{AC}}$?
2) How long is $\overline{X Z}$?
3) Is $\triangle \mathrm{ABC} \cong \triangle X Y Z$?

Look at the pairs of triangles below. Are they congruent?

What additional information would you need to prove the triangles are congruent using the Hypotenuse-Leg Postulate?

Proof A)

Given: $\overline{\mathrm{AD}} \perp \overline{\mathrm{BC}}, \overline{\mathrm{BA}} \cong \overline{\mathrm{AC}}$
Prove: $\triangle A B D \cong \triangle A C D$

Proof B)
Given: DE is an altitude.
$\mathrm{DF} \cong \mathrm{DC}$
Prove: $\triangle \mathrm{DEF} \cong \triangle \mathrm{DEC}$

Proof C)

Given: DE is a perpendicular bisector of FC . $\mathrm{DF} \cong \mathrm{DC}$
Prove: $\triangle \mathrm{DEF} \cong \triangle \mathrm{DEC}$

Proof D)

Given: LN is an altitude
$\mathrm{LM} \cong \mathrm{LO}$
Prove: $\triangle \mathrm{LNM} \cong \Delta \mathrm{LON}$

Proof E)
Challenge Proof
Given: $\mathrm{AD} \perp \mathrm{DF}, \mathrm{BE} \perp \mathrm{EC}$ $\mathrm{EF} \cong \mathrm{DC}, \mathrm{BC} \cong \mathrm{AF}$
Prove: $\triangle \mathrm{BEC} \cong \triangle \mathrm{ADF}$

© www.mathwarehouse.com

Proof F)

Given: LN is the perpendicular bisector of MO
Prove: $\triangle \mathrm{LNM} \cong \triangle \mathrm{LON}$

Proof G)
Given: $\mathrm{FD} \cong \mathrm{DC}, \mathrm{DE}$ is an altitude
Prove: $\triangle \mathrm{DEF} \cong \triangle \mathrm{DEC}$

Think Pair Share

Ray and Angel were having a debate. Ray says that there should be a "Leg-Leg" theorem because if two right triangles have 2 congruent legs, then the triangles must be congruent. (The hypotenuses will be equal after all)

Angel disagrees-Although it's true that a pair of right triangles with congruent legs must be congruent, we don't need a leg leg theorem since we have SAS.

Who is correct? Explain your reasoning

URL on the Hypotenuse Leg Theorem

http://www.mathwarehouse.com/geometry/congruent_triangles/hypotenuse-legtheorem.php

© www.mathwarehouse.com
All Rights Reserved
Commercial Use Prohibited

TEACHERS: Feel free to make copies of this worksheet for the sole purpose of use in your own classroom. ENJOY!!! Redistribution in any other form is prohibited.

More Math worksheets and activities available at www.mathwarehouse.com/classroom/worksheets-and-activities.php

Play Math Games at TheMathGames.com

