﻿ Midpoint Of A Line -pictures, examples explained with cool applet and a video tutorial

# Midpoint Of A Line

### Examples

$$A ( \color{Red}{2}, \color{Green}{14} ) \text{ and }B ( \color{Red}{4} , \color{Green}{6} ) \\ Midpoint = \Big( \frac{ \color{Red}{x_2 + x_1}}{2} , \frac{\color{Green}{y_2 + y_1}}{2} \Big) \\ \Big( \frac{\color{Red}{2 + 4} }{ 2} , \frac{\color{Green}{14 + 6} }{ 2} \Big) = \Big( \frac{ 6 }{ 2} , \frac{ 20 }{ 2} \Big) \\ Midpoint = (3, 10)$$

### Practice Problems

$$A ( \color{Red}{4}, \color{Green}{ 7 } ) \text{ and }B ( \color{Red}{-8} , \color{Green}{ 15 } ) \\ Midpoint = \Big( \frac{ \color{Red}{x_2 + x_1}}{2} , \frac{\color{Green}{y_2 + y_1}}{2} \Big) \\ \Big( \frac{\color{Red}{4 + -8} }{ 2} , \frac{\color{Green}{7 + 15} }{ 2} \Big) = \Big( \frac{ -4}{ 2} , \frac{22}{ 2} \Big) \\ Midpoint = (-2,11)$$

Go the same amount in the x and y directions

$$A ( \color{Red}{-2}, \color{Green}{ 3 } ) \text{ and }B ( \color{Red}{-10} , \color{Green}{ 12 } ) \\ Midpoint = \Big( \frac{ \color{Red}{x_2 + x_1}}{2} , \frac{\color{Green}{y_2 + y_1}}{2} \Big) \\ \Big( \frac{\color{Red}{-2 + -10} }{ 2} , \frac{\color{Green}{3 + 12} }{ 2} \Big) = \Big( \frac{ -12}{ 2} , \frac{15}{ 2} \Big) \\ Midpoint = (-6,7.5)$$

### Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!