How to Use the Quotient Rule for Derivatives

Quick Overview

  • The Quotient Rule: If $$\displaystyle h(x) = \frac{f(x)}{g(x)}$$ then $$\displaystyle h'(x) = \frac{g(x)\cdot f'(x) - f(x)\cdot g'(x)}{[g(x)]^2}$$.
  • If you think of the function as $$h(x) = \frac{\mbox{high}}{\mbox{low}}$$, then the quotient rule becomes

    $$h'(x) = \frac{\mbox{low}\cdot d\mbox{high} - \mbox{high}\cdot d\mbox{low}}{\mbox{low-squared}}$$

    where $$d$$ stands for derivative. It becomes a little chant
    Low dee high, high dee low...
quotient rule formula animation

Examples

Example 1

Suppose $$\displaystyle f(x) = \frac{2x+3}{5x + 1}$$. Find $$f'(x)$$.

Step 1

Differentiate using the Quotient Rule. Parts in $$\blue{blue}$$ are related to the numerator $$\blue{2x+3}$$

$$ f'(x) = \frac{(5x+1)\cdot \blue 2 - \blue{(2x+3)}\cdot 5}{(5x+1)^2} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{2(5x+1) - 5(2x+3)}{(5x+1)^2}\\[6pt] & = \frac{10x+2 - 10x-15}{(5x+1)^2}\\[6pt] & = \frac{-13}{(5x+1)^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = -\frac{13}{(5x+1)^2}$$

Note: There is no reason to expand the denominator. In fact, doing so will make the derivative harder to work with.

Example 2

Suppose $$\displaystyle f(x) = \frac{x^2 + 6}{4x+3}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} f'(x) & = \frac{(4x+3)\cdot\blue{2x}-\blue{(x^2+6)}\cdot 4}{(4x+3)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(4x+3)\cdot 2x-(x^2+6)\cdot 4}{(4x+3)^2}\\[6pt] & = \frac{8x^2+6x-4x^2-24}{(4x+3)^2}\\[6pt] & = \frac{4x^2+6x-24}{(4x+3)^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{4x^2+6x-24}{(4x+3)^2}$$.

Example 3

Find $$\displaystyle \frac d {dx}\left(\tan kx\right)$$ where $$k$$ is any constant.

Step 1

Express $$\tan kx$$ in terms of sine and cosine.

$$ \tan x = \frac{\sin kx}{\cos kx} $$

Step 2

Differentiate using the quotient rule. Parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} \frac d {dx}\left(\tan kx\right) & = \frac d {dx}\left(\frac{\blue{\sin kx}}{\cos kx}\right)\\[6pt] & = \frac{\cos kx\cdot\blue{k\cos kx} - \blue{\sin kx}\,(-k\sin kx)}{\cos^2 x}\\[6pt] & = \frac{k\left(\cos^2 kx + \sin^2 kx\right)}{\cos^2 x} \end{align*} $$

Step 3

Simplify using trigonometric identities.

$$ \begin{align*} \frac d {dx}\left(\tan x\right) & = \frac{k\left(\cos^2 kx + \sin^2 x\right)}{\cos^2 kx}\\[6pt] & = \frac k {\cos^2 kx}\\[6pt] & = k\,\sec^2 kx \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\tan kx\right) = k\sec^2 kx$$

Continue to Practice Problems
Download this web page as a pdf with answer key

back to How to Use the Product Rule next to How to Use the Chain Rule

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!