How to Use the Quotient Rule for Derivatives:
Practice Problems

Download this web page as a pdf with answer key
Problem 1

Suppose $$\displaystyle f(x) = \frac{9x + 4}{6x+5}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

\begin{align*} f'(x) & = \frac{(6x+5)\cdot \blue 9 - \blue{(9x+4)}\cdot 6}{(6x+5)^2} \end{align*}

Step 2

Simplify the numerator.

\begin{align*} f'(x) & = \frac{(6x+5)\cdot \blue 9 - \blue{(9x+4)}\cdot 6}{(6x+5)^2}\\[6pt] & = \frac{54x + 45 - (54x + 24)}{(6x+5)^2}\\[6pt] & = \frac{54x + 45 - 54x - 24}{(6x+5)^2}\\[6pt] & = \frac{21}{(6x+5)^2} \end{align*}

Answer

$$\displaystyle f'(x) = \frac{21}{(6x+5)^2}$$

Problem 2

Suppose $$\displaystyle f(x) = \frac{2 - 11x}{3x+4}$$. Find $$f'(0)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(3x+4)\cdot \blue{(-11)} - \blue{(2-11x)}\cdot 3}{(3x+4)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(3x+4)\cdot \blue{(-11)} - \blue{(2-11x)}\cdot 3}{(3x+4)^2}\\[6pt] & = \frac{-33x-44 - (6-33x)}{(3x+4)^2}\\[6pt] & = \frac{-33x-44 - 6+33x}{(3x+4)^2}\\[6pt] & = \frac{-50}{(3x+4)^2} \end{align*} $$

Step 3

Evaluate $$f'(x)$$ at $$x = 0$$.

$$ f'(0) = \frac{-50}{(3(0)+4)^2} = \frac{-50}{4^2} = -\frac{50}{16} = -\frac{25} 8 $$

Answer

$$\displaystyle f'(0) = -\frac{25} 8$$

Problem 3

Suppose $$\displaystyle f(x) = \frac{x^2 + 1}{2x+3}$$. Find $$f'(1)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(2x+3)\cdot\blue{2x} - \blue{(x^2+1)}\cdot 2}{(2x+3)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(2x+3)\cdot 2x - (x^2+1)\cdot 2}{(2x+3)^2}\\[6pt] & = \frac{4x^2 + 6x - (2x^2+2)}{(2x+3)^2}\\[6pt] & = \frac{4x^2 + 6x - 2x^2 - 2}{(2x+3)^2}\\[6pt] & = \frac{2x^2 + 6x - 2}{(2x+3)^2}\\[6pt] & = \frac{2(x^2 + 3x - 1)}{(2x+3)^2} \end{align*} $$

Step 3

Evaluate $$f'(x)$$ at $$x = 1$$.

$$ f'(1) = \frac{2\left((1)^2 + 3(1) - 1\right)}{\left(2(1)+3\right)^2} = \frac{2\left(1 + 3 - 1\right)}{\left(2+3\right)^2} = \frac{6}{25} $$

Answer

$$ \displaystyle f'(1) = \frac 6 {25} $$

Problem 4

Suppose $$\displaystyle f(x) = \frac{x^2 + 4x + 1}{x-8}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(x-8)\cdot\blue{(2x+4)} - \blue{(x^2 + 4x + 1)}\cdot 1}{(x-8)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{\red{(x-8) (2x+4)} - (x^2 + 4x + 1)}{(x-8)^2}\\[6pt] & = \frac{\red{2x^2+4x-16x-32} - x^2 - 4x - 1}{(x-8)^2}\\[6pt] & = \frac{x^2 - 16x - 33}{(x-8)^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{x^2 - 16x - 33}{(x-8)^2}$$

Problem 5

Suppose $$\displaystyle f(x) = \frac{3x - 2}{4x^2 - 9}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(4x^2 - 9)\cdot \blue 3 - \blue{(3x-2)}\cdot (8x)}{(4x^2 - 9)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(4x^2 - 9)\cdot 3 - (3x-2)\cdot (8x)}{(4x^2 - 9)^2}\\[6pt] & = \frac{12x^2 - 27 - (24x^2-16x)}{(4x^2 - 9)^2}\\[6pt] & = \frac{12x^2 - 27 - 24x^2 + 16x}{(4x^2 - 9)^2}\\[6pt] & = \frac{-12x^2 + 16x - 27}{(4x^2 - 9)^2}\\[6pt] & = -\frac{12x^2 - 16x + 27}{(4x^2 - 9)^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = -\frac{12x^2 - 16x + 27}{(4x^2 - 9)^2}$$

Problem 6

Suppose $$\displaystyle f(x) = \frac{5x+2}{3x^2-x}$$. Find $$f'(2)$$

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(3x^2-x)\cdot\blue 5 - \blue{(5x+2)}\cdot (6x-1)}{(3x^2-x)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(3x^2-x)\cdot 5 - \red{(5x+2)(6x-1)}}{(3x^2-x)^2}\\[6pt] & = \frac{15x^2 - 5x - \red{(30x^2-5x+12x-2)}}{(3x^2-x)^2}\\[6pt] & = \frac{15x^2 - 5x - 30x^2+5x-12x+2}{(3x^2-x)^2}\\[6pt] & = \frac{-15x^2 - 12x + 2}{(3x^2-x)^2}\\[6pt] & = -\frac{15x^2 + 12x - 2}{(3x^2-x)^2} \end{align*} $$

Step 3

Evaluate $$f'(x)$$ at $$x = 2$$

$$ f'(2) = -\frac{15(2)^2 + 12(2) - 2}{[3(2)^2- 2]^2} = -\frac{15(4) + 24 - 2}{[3(4)- 2]^2} = -\frac{60 + 22}{10^2} = -\frac{82}{100} = -\frac{41}{50} $$

Answer

$$ \displaystyle f'(2) = -\frac{41}{50} $$

Problem 7

Suppose $$\displaystyle f(x) = \frac{x^2 + 1}{x^2 - 1}$$. Find $$f'(3)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(x^2 - 1)\cdot\blue{2x} - \blue{(x^2+1)}\cdot 2x}{(x^2 - 1)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(x^2 - 1)\cdot 2x - (x^2+1)\cdot 2x}{(x^2 - 1)^2}\\[6pt] & = \frac{2x^3 - 2x - (2x^3+2x)}{(x^2 - 1)^2}\\[6pt] & = \frac{2x^3 - 2x - 2x^3 - 2x}{(x^2 - 1)^2}\\[6pt] & = \frac{- 2x - 2x}{(x^2 - 1)^2}\\[6pt] & = \frac{- 4x}{(x^2 - 1)^2}\\[6pt] & = -\frac{4x}{(x^2 - 1)^2} \end{align*} $$

Step 3

Evaluate $$f'(3)$$

$$ f'(3) = -\frac{4(3)}{(3^2 - 1)^2} = -\frac{12}{8^2} = - \frac{12}{64} = - \frac 3 {16} $$

Answer

$$\displaystyle f'(3) = -\frac 3 {16}$$

Problem 8

Suppose $$\displaystyle f(x) = \frac{2x^2 + 4x + 3}{x^2-3x+2}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(x^2-3x+2)\cdot\blue{(4x+4)} - \blue{(2x^2 + 4x + 3)}\cdot (2x - 3)}{(x^2-3x+2)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{\blue{(x^2-3x+2)(4x+4)} - \red{(2x^2 + 4x + 3)(2x - 3)}}{(x^2-3x+2)^2}\\[6pt] & = \frac{\blue{4x^3 - 12x^2 + 8x + 4x^2 - 12x + 8} - \red{(2x^2 + 4x + 3)(2x - 3)}}{(x^2-3x+2)^2}\\[6pt] & = \frac{\blue{4x^3 - 8x^2 - 4x + 8} - \red{(2x^2 + 4x + 3)(2x - 3)}}{(x^2-3x+2)^2}\\[6pt] & = \frac{\blue{4x^3 - 8x^2 - 4x + 8} - \red{(4x^3+8x^2+6x - 6x^2-12x-9)}}{(x^2-3x+2)^2}\\[6pt] & = \frac{\blue{4x^3 - 8x^2 - 4x + 8} - \red{(4x^3+2x^2-6x-9)}}{(x^2-3x+2)^2}\\[6pt] & = \frac{4x^3 - 8x^2 - 4x + 8 - 4x^3-2x^2+6x+9}{(x^2-3x+2)^2}\\[6pt] & = \frac{- 10x^2 +2x + 17}{(x^2-3x+2)^2}\\[6pt] & = -\frac{10x^2 - 2x - 17}{(x^2-3x+2)^2} \end{align*} $$

Answer

$$\displaystyle f'(x) = -\frac{10x^2 - 2x - 17}{(x^2-3x+2)^2}$$

Problem 9

Suppose $$\displaystyle f(x) = \frac{x^{2/3}}{4x-1}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(4x-1)\cdot \blue{\frac 2 3 x^{-1/3}} - \blue{x^{2/3}}\cdot 4}{(4x-1)^2} \end{align*} $$

Step 2

Simplify the derivative.

$$ \begin{align*} f'(x) & = \frac{(4x-1)\cdot \frac 2 3 x^{-1/3} - x^{2/3}\cdot 4}{(4x-1)^2}\\[6pt] & = \frac{\left(\frac 2 3x^{-1/3}\cdot(4x-1) - 4x^{2/3}\right)}{(4x-1)^2}\cdot \blue{\frac 3 3}\\[6pt] & = \frac{\left(2x^{-1/3}\cdot(4x-1) - 12x^{2/3}\right)}{3(4x-1)^2}\cdot \red{\frac{x^{1/3}}{x^{1/3}}}\\[6pt] & = \frac{2(1)\cdot(4x-1) - 12x}{3x^{1/3}(4x-1)^2}\\[6pt] & = \frac{8x-2 - 12x}{3x^{1/3}(4x-1)^2}\\[6pt] & = \frac{-4x-2}{3x^{1/3}(4x-1)^2}\\[6pt] & = -\frac{2(2x+1)}{3x^{1/3}(4x-1)^2} \end{align*} $$

Step 3

(Optional) Rationalize the denominator.

$$ f'(x) = -\frac{2(2x+1)}{3x^{1/3}(4x-1)^2} = -\frac{2\sqrt[3]{x^2}\,(2x+1)}{3x(4x-1)^2} $$

Answer

$$ \displaystyle f'(x) = -\frac{2\sqrt[3]{x^2}\,(2x+1)}{3x(4x-1)^2} $$

Problem 10

Suppose $$\displaystyle f(x) = \frac{3\sqrt{x}}{5 - 2x}$$. Find $$f'(4)$$.

Step 1

Rewrite the numerator as a power function.

$$ f(x) = \frac{3x^{1/2}}{5 - 2x} $$

Step 2

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(5-2x)\cdot\blue{3\left(\frac 1 2\right)x^{-1/2}} - \blue{3x^{1/2}}\cdot (-2)}{(5-2x)^2} \end{align*} $$

Step 3

Simplify the derivative.

$$ \begin{align*} f'(x) & = \frac{(5-2x)\cdot \frac 3 2\,x^{-1/2} - 3x^{1/2}\cdot (-2)}{(5-2x)^2}\\[6pt] & = \frac{\frac 3 2\,x^{-1/2}\,(5-2x) + 6x^{1/2}}{(5-2x)^2}\cdot \blue{\frac 2 2}\\[6pt] & = \frac{3x^{-1/2}\,(5-2x) + 12x^{1/2}}{2(5-2x)^2}\cdot \red{\frac{x^{1/2}}{x^{1/2}}}\\[6pt] & = \frac{3(5-2x) + 12x}{2x^{1/2}\,(5-2x)^2}\\[6pt] & = \frac{15-6x + 12x}{2x^{1/2}\,(5-2x)^2}\\[6pt] & = \frac{6x + 15}{2x^{1/2}\,(5-2x)^2}\\[6pt] & = \frac{3(2x + 5)}{2x^{1/2}\,(5-2x)^2} \end{align*} $$

Step 4

(Optional) Rationalize the denominator.

$$ f'(x) = \frac{3(2x + 5)}{2x^{1/2}\,(5-2x)^2} = \frac{3\sqrt x\,(2x + 5)}{2x\,(5-2x)^2} $$

Step 5

Evaluate $$f'(4)$$.

$$ \begin{align*} f'(4) & = \frac{3\sqrt 4\,(2(4) + 5)}{2(4)\,[5-2(4)]^2}\\[6pt] & = \frac{3(2)(13)}{2(4)(-3)^2}\\[6pt] & = \frac{13}{(4)(3)}\\[6pt] & = \frac{13}{12} \end{align*} $$

Answer

$$ \displaystyle f'(4) = \frac{13}{12} $$

Problem 11

Suppose $$\displaystyle f(x) = \frac{e^{2x}}{2x + 1}$$. Find $$f'(0)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(2x + 1)\cdot \blue{2e^{2x}} - \blue{e^{2x}}\cdot 2}{(2x + 1)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(2x + 1)\cdot 2e^{2x} - 2e^{2x}}{(2x + 1)^2}\\[6pt] & = \frac{\red{2e^{2x}}(2x + 1) - \red{2e^{2x}}}{(2x + 1)^2}\\[6pt] & = \frac{\red{2e^{2x}}\left[(2x + 1) - 1\right]}{(2x + 1)^2}\\[6pt] & = \frac{2e^{2x}(2x)}{(2x + 1)^2}\\[6pt] & = \frac{4xe^{2x}}{(2x + 1)^2} \end{align*} $$

Step 3

Evaluate $$f'(0)$$

$$ f'(0) = \frac{4(0)e^{2(0)}}{(2(0) + 1)^2} = 0 $$

Answer

$$\displaystyle f'(0) = 0$$

Problem 12

Suppose $$\displaystyle f(x) = \frac{ 6x - 1 }{ e^{-3x} + 1 }$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(e^{-3x} + 1)\cdot \blue 6 - \blue{(6x - 1)}\cdot (-3e^{-3x})}{(e^{-3x} + 1)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(e^{-3x} + 1)\cdot 6 - (6x - 1)\cdot (-3e^{-3x})}{(e^{-3x} + 1)^2}\\[6pt] & = \frac{6e^{-3x} + 6 - (-18xe^{-3x} + 3e^{-3x})}{(e^{-3x} + 1)^2}\\[6pt] & = \frac{6e^{-3x} + 6 + 18xe^{-3x} - 3e^{-3x}}{(e^{-3x} + 1)^2}\\[6pt] & = \frac{18xe^{-3x} + 3e^{-3x} + 6}{(e^{-3x} + 1)^2}\\[6pt] & = \frac{3\left(6xe^{-3x} + e^{-3x} + 2\right)}{(e^{-3x} + 1)^2} \end{align*} $$

Answer

$$ \displaystyle f'(x) = \frac{3\left(6xe^{-3x} + e^{-3x} + 2\right)}{(e^{-3x} + 1)^2} $$

Problem 13

Suppose $$\displaystyle f(x) = \frac{\sin 2x}{1 - 3x}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{(1 - 3x)\cdot\blue{2\cos 2x} - \blue{\sin 2x}\cdot (-3)}{(1 - 3x)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{(1 - 3x)\cdot 2\cos 2x - \sin 2x\cdot (-3)}{(1 - 3x)^2}\\[6pt] & = \frac{2(1 - 3x)\cos 2x +3\sin 2x}{(1 - 3x)^2} \end{align*} $$

Answer

$$ \displaystyle f'(x) = \frac{2(1 - 3x)\cos 2x +3\sin 2x}{(1 - 3x)^2} $$

Problem 14

Suppose $$\displaystyle f(x) = \frac{7x - 6}{\sin \pi x}$$. Find $$f'\left(\frac 1 2\right)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{\sin \pi x \cdot \blue 7 - \blue{(7x-6)}\cdot \pi \cos \pi x}{\sin^2 \pi x} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{\sin \pi x \cdot 7 - (7x-6)\cdot \pi \cos \pi x}{\sin^2 \pi x}\\[6pt] & = \frac{7\sin \pi x - \pi (7x-6)\cos \pi x}{\sin^2 \pi x} \end{align*} $$

Step 3

Evaluate $$f'\left(\frac 1 2\right)$$

$$ \begin{align*} f'(2) & = \frac{7\blue{\sin \frac \pi 2} - \pi \left[7\left(\frac 1 2\right)-6\right]\red{\cos \frac \pi 2}}{\sin^2 \frac \pi 2}\\[6pt] & = \frac{7\blue{(1)} - 8\pi\red{(0)}}{\left(\sin \frac \pi 2\right)^2}\\[6pt] & = \frac{7}{1}\\[6pt] & = 7 \end{align*} $$

Answer

$$f'\left(\frac 1 2\right) = 7$$

Problem 15

Suppose $$\displaystyle f(x) = \frac{\sin 2x}{\sin x}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{\sin x\cdot \blue{2\cos 2x} - \blue{\sin 2x}\cos x}{\sin^2 x}\\[6pt] & = \frac{2\sin x\cos 2x - \sin 2x\cos x}{\sin^2 x} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{2\sin x\cos 2x - \sin 2x\cos x}{\sin^2 x}$$

Problem 16

Suppose $$\displaystyle f(x) = \frac{\sin 2x}{\cos 3x}$$. Find $$f'(x)$$.

Step 1

Differentiate with the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

$$ \begin{align*} f'(x) & = \frac{\cos 3x\cdot\blue{2\cos 2x} - \blue{\sin 2x}\cdot (-3\sin 3x)}{\cos^2 3x} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} f'(x) & = \frac{\cos 3x\cdot 2\cos 2x - \sin 2x\cdot (-3\sin 3x)}{\cos^2 3x}\\[6pt] & = \frac{2\cos 3x\cos 2x + 3\sin 2x\sin 3x}{\cos^2 3x} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{2\cos 3x\cos 2x + 3\sin 2x\sin 3x}{\cos^2 3x}$$

Problem 17

Suppose $$\displaystyle f(x) = \frac{\tan 8x}{\tan 3x}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator.

Note: we established in Example 3 that $$\displaystyle \frac d {dx}\left(\tan kx\right) = k\sec^2 kx$$

$$ \begin{align*} f'(x) & = \frac{\tan3x\cdot\blue{8\sec^2 8x} - \blue{\tan 8x}\cdot 3\sec^2 3x }{\tan^2 3x}\\[6pt] & = \frac{8\tan3x\sec^2 8x - 3\tan 8x\sec^2 3x }{\tan^2 3x} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{8\tan3x\sec^2 8x - 3\tan 8x\sec^2 3x }{\tan^2 3x}$$

Problem 18

Suppose $$\displaystyle f(x) = \frac{4x}{\tan x}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator of $$f$$.

$$ \begin{align*} f'(x) & = \frac{\tan x \cdot \blue 4 - \blue{4x}\sec^2 x}{\tan^2 x}\\[6pt] & = \frac{4\tan x - 4x\sec^2 x}{\tan^2 x} \end{align*} $$

Answer

$$\displaystyle f'(x) = \frac{4\tan x - 4x\sec^2 x}{\tan^2 x}$$

Problem 19

Suppose $$f(x) = \cot kx$$. Find $$f'(x)$$.

Step 1

Write $$\cot kx$$ in terms of sines and cosines.

$$ \cot kx = \frac{\cos kx}{\sin kx} $$

Step 2

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator of the function, $$\blue{\cos kx}$$.

$$ \begin{align*} \frac d {dx}\left(\cot kx\right) & = \frac d {dx}\left(\frac{\blue{\cos kx}}{\sin kx}\right)\\[6pt] & = \frac{\sin kx \cdot \blue{(-k\sin kx)} - \blue{\cos kx}\cdot k\cos kx}{\sin^2 kx}\\[6pt] & = \frac{-k\sin^2 kx - k\cos^2 kx}{\sin^2 kx} \end{align*} $$

Step 3

Simplify the derivative using trigonometric identities.

$$ \begin{align*} \frac d {dx}\left(\cot kx\right) & = \frac{-k\sin^2 kx - k\cos^2 kx}{\sin^2 kx}\\[6pt] & = \frac{-k(\sin^2 kx + \cos^2 kx)}{\sin^2 kx}\\[6pt] & = \frac{-k(1)}{\sin^2 kx}\\[6pt] & = -k\cdot\frac 1 {\sin^2 kx}\\[6pt] & = -k \csc^2 kx \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\cot kx\right) = -k \csc^2 kx$$

Problem 20

Suppose $$f(x) = \frac{\cot 3x}{\cot 4x}$$. Find $$f'(x)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are associated with the numerator of $$f$$.

Note: We'll use the fact that $$\displaystyle \frac d {dx}\left(\cot kx\right) = -k\csc^2 kx$$

$$ \begin{align*} f'(x) & = \frac{\cot 4x \cdot \blue{(-3\csc^2 3x)} - \blue{\cot 3x}\cdot (-4\csc^2 4x)}{\cot^2 4x}\\[6pt] & = \frac{-3\cot 4x\csc^2 3x + 4\cot 3x\csc^2 4x}{\cot^2 4x}\\[6pt] & = \frac{4\cot 3x\csc^2 4x-3\cot 4x\csc^2 3x}{\cot^2 4x} \end{align*} $$

Answer

$$\displaystyle f'(x)= \frac{4\cot 3x\csc^2 4x-3\cot 4x\csc^2 3x}{\cot^2 4x}$$

Return to lesson
Download this web page as a pdf with answer key

back to How to Use the Product Rule next to How to Use the Chain Rule

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!