How to Differentiate Trigonometric Functions. Visual Explanation with color coded examples

How to Differentiate Trigonometric Functions

Quick Overview

  • $$\displaystyle \frac d {dx}\left(\sin kx\right) = k\cos kx$$
  • $$\displaystyle \frac d {dx}\left(\cos kx\right) = -k\sin kx$$
  • $$\displaystyle \frac d {dx}\left(\tan kx\right) = k\sec^2 kx$$
  • $$\displaystyle \frac d {dx}\left(\cot kx\right) = -k\csc^2 kx$$
  • $$\displaystyle \frac d {dx}\left(\sec kx\right) = k\sec kx\tan kx$$
  • $$\displaystyle \frac d {dx}\left(\csc kx\right) = -k\csc kx\cot kx$$
  • Notice that the derivatives of the co-functions are negative. That is, the derivative of the cosine, cotangent, and cosecant are the ones with negative signs.
  • The trig functions are paired when it comes to differentiation: sine and cosine, tangent and secant, cotangent and cosecant.
  • This lesson assumes you are familiar with the Power Rule, Product Rule, Quotient Rule and Chain Rule.

Derivations of the Derivatives of Trig Functions

The derivatives of each of the trig functions was derived in a previous lesson. If you would like to see why the derivatives are what they are, here are links to the lessons where the derivations are given:

Derivatives of the sine and cosine:
Derivatives of the tangent and cotangent:
Derivatives of the secant and cosecant:

Helpful Patterns

It may seem overwhelming to try and remember all of these derivatives, but there are three patterns that can be helpful.

Pattern 1: Negatives and the Co-functions.

Only the derivatives of the co-functions have a negative sign.

$$ \begin{array}{lcl} \frac d {dx}\left(\sin x\right) = \cos x & \hspace{15mm} & \frac d {dx}\left(\cos x\right) = -\sin x\\[6pt] % \frac d {dx}\left(\tan x\right) = \sec^2 x & & \frac d {dx}\left(\cot x\right) = -\csc^2 x\\[6pt] % \frac d {dx}\left(\sec x\right) = \sec x\tan x & & \frac d {dx}\left(\csc x\right) = -\csc x\cot x\\ \end{array} $$

Pattern 2: Pairs of Functions

The trig functions are paired when it comes to derivatives.

$$ \frac d {dx}\left(\sin x\right) = \cos x \\ \frac d {dx} \left(\cos x\right) = -\sin x \\ \hspace{1mm} \\ \frac d {dx}\left(\tan x\right) = \sec^2 x \\ \frac d {dx}\left(\sec x\right) = \sec x \tan x \\ \hspace{1mm} \\ \frac d {dx}\left(\cot x\right) = -\csc^2 x \\ \frac d {dx}\left(\csc x\right) = -\csc x\cot x $$ Pattern 3: Each Type of Trig Function has its own Pattern

Sines and Cosines have Single Function Derivatives

$$ \frac d {dx}\left(\sin x\right) = \cos x \\ \frac d {dx} \left(\cos x\right) = -\sin x $$

Tangent and Cotangents have Squared Derivatives

$$ \frac d {dx}\left(\tan x\right) = \sec^2 x \\ \frac d {dx}\left(\cot x\right) = -\csc^2 x $$

Secants and Cosecants have Two Function Derivatives

$$ \frac d {dx}\left(\sec x\right) = \sec x \tan x \\ \frac d {dx}\left(\csc x\right) = -\csc x\cot x $$

Examples

Example 1

Find $$\displaystyle \frac d {dx}\left(\cos(x^2+9)\right)$$.

Step 1

Use the chain rule to differentiate.

$$ \frac d {dx}\left(\cos(x^2+9)\right) = -\sin(x^2+9)\cdot \frac d {dx}\left(x^2 + 9\right) = -\sin(x^2+9)\cdot 2x = -2x\sin(x^2+9) $$

Answer

$$\displaystyle \frac d {dx}\left(\cos(x^2+9)\right) = -2x\sin(x^2+9)$$

Example 2

Suppose $$f(x) = x^4\tan 3x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{x^4}\red{\tan 3x} $$

Step 2

Differentiate using the product rule.

$$ \begin{align*}% f'(x) & = \blue{4x^3}\tan 3x + x^4\cdot \red{3\sec^2 3x}\\ & = 4x^3\tan 3x + 3x^4\sec^2 3x \end{align*} $$

Step 3

Simplify by factoring.

$$ \begin{align*} f'(x) & = 4\blue{x^3}\tan 3x + 3\blue{x^4}\sec^2 3x\\ & = \blue{x^3}\left(4\tan 3x + 3x\sec^2 3x\right) \end{align*} $$

Answer

$$\displaystyle f'(x) = x^3\left(4\tan 3x + 3x\sec^2 3x\right)$$.

Example 3

Find $$\displaystyle \frac d {dx}\left(\frac{\sin 8x}{1 + \sec 8x}\right)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} \frac d {dx}\left(\frac{\sin 8x}{1 + \sec 8x}\right) & = \frac{(1 + \sec 8x)\cdot\blue{8\cos 8x} - \blue{\sin 8x}\cdot 8\sec 8x\tan 8x}{(1 + \sec 8x)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} \frac d {dx}\left(\frac{\sin 8x}{1 + \sec 8x}\right) & = \frac{(1 + \sec 8x)\cdot \blue 8\cos 8x - \sin 8x\cdot \blue 8\sec 8x\tan 8x}{(1 + \sec 8x)^2}\\[6pt] & = \frac{\blue 8(1 + \red{\sec 8x})\cos 8x - \blue 8\sin 8x\red{\sec 8x}\tan 8x}{(1 + \sec 8x)^2}\\[6pt] & = \frac{8\left(1 + \red{\frac 1 {\cos 8x}}\right)\cos 8x - 8\sin 8x\cdot\red{\frac 1 {\cos 8x}}\cdot\tan 8x}{(1 + \sec 8x)^2}\\[6pt] & = \frac{8\left(\cos 8x + \red 1\right) - 8\cdot \frac{\sin 8x}{\red{\cos 8x}}\cdot\tan 8x}{(1 + \sec 8x)^2}\\[6pt] & = \frac{8\left(\cos 8x + 1\right) - 8\tan 8x\tan 8x}{(1 + \sec 8x)^2}\\[6pt] & = \frac{8\left(\cos 8x + 1\right) - 8\tan^2 8x}{(1 + \sec 8x)^2}\\[6pt] & = \frac{8\left(\cos 8x + 1 - \tan^2 8x\right)}{(1 + \sec 8x)^2}\\[6pt] & = \frac{8\left(\cos 8x - \tan^2 8x + 1\right)}{(1 + \sec 8x)^2} \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\frac{\sin 8x}{1 + \sec 8x}\right) = \frac{8\left(\cos 8x - \tan^2 8x + 1\right)}{(1 + \sec 8x)^2}$$

Example 4

Suppose $$f(x) = \cot^5 11x$$. Find $$f'\left(\frac \pi 3\right)$$.

Step 1

Rewrite the function to emphasize that the cotangent is being raised to the fifth power.

$$ f(x) = \left(\cot 11x\right)^5 $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = 5\left(\cot 11x\right)^4\cdot \frac d {dx}\left(\cot 11x\right)\\[6pt] & = 5\left(\cot 11x\right)^4\cdot (-11\csc^2 11x)\\[6pt] & = -55\left(\cot 11x\right)^4\cdot \csc^2 11x \end{align*} $$

Step 3

Evaluate $$f'\left(\frac \pi 3\right)$$

$$ \begin{align*} f'\left(\frac \pi 3\right) & = -55\left[\cot \left(11\cdot \frac \pi 3\right)\right]^4\cdot \csc^2\left(11\cdot \frac \pi 3\right)\\[6pt] & = -55\left[-\frac{\sqrt 3} 3\right]^4\cdot \left(-\frac{2\sqrt 3} 3\right)^2\\[6pt] & = -55\left[\frac 9{81}\right]\cdot \left(\frac{12} 9\right)\\[6pt] & = -\frac{220}{27} \end{align*} $$

Answer

$$\displaystyle f'\left(\frac\pi 3\right) = -\frac{220}{27}$$.

Continue to Practice Problems
Download this web page as a pdf with answer key

back to How to Differentiate Exponential Functions next to How to Differentiate Hyperbolic Trig Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!