How to Differentiate Hyperbolic Trigonometric Functions. Visual Explanation with color coded examples
$$ \newcommand{\sech}{\operatorname{sech}} \newcommand{\csch}{\operatorname{csch}} $$

How to Differentiate Hyperbolic Trigonometric Functions

Quick Overview

  • $$\displaystyle \frac d {dx}\left(\sinh kx\right) = k\cosh kx$$
  • $$\displaystyle \frac d {dx}\left(\cosh kx\right) = k\sinh kx$$
  • $$\displaystyle \frac d {dx}\left(\tanh kx\right) = k\operatorname{sech}^2 kx$$
  • $$\displaystyle \frac d {dx}\left(\coth kx\right) = -k\operatorname{csch}^2 kx$$
  • $$\displaystyle \frac d {dx}\left(\operatorname{sech} kx\right) = -k\operatorname{sech} kx\tanh kx$$
  • $$\displaystyle \frac d {dx}\left(\operatorname{csch} kx\right) = -k\operatorname{csch} kx\coth kx$$
  • Notice that these derivatives are nearly identical to the "normal" trig derivatives. The only exception is the negative signs on the derivatives of the $$\cosh x$$ and $$\operatorname{sech} x$$.
  • The trig functions are paired when it comes to differentiation: sinh and cosh, tanh and sech, coth and csch.
  • This lesson assumes you are familiar with the $$\blue{Power\hspace{2mm}Rule}$$ , $$\blue{Product\hspace{2mm}Rule}$$, $$\blue{Quotient\hspace{2mm}Rule}$$ and $$\blue{Chain\hspace{2mm}Rule}$$.

Examples

Example 1

Find $$\displaystyle \frac d {dx}\left(\cosh(x^2+9)\right)$$.

Step 1

Use the chain rule to differentiate.

$$ \frac d {dx}\left(\cosh(x^2+9)\right) = \sinh(x^2+9)\cdot \frac d {dx}\left(x^2 + 9\right) = \sinh(x^2+9)\cdot 2x = 2x\sinh(x^2+9) $$

Answer

$$\displaystyle \frac d {dx}\left(\cosh(x^2+9)\right) = 2x\sinh(x^2+9)$$

Example 2

Suppose $$f(x) = x^4\tanh 3x$$. Find $$f'(x)$$.

Step 1

Identify the factors in the function.

$$ f(x) = \blue{x^4}\red{\tan 3x} $$

Step 2

Differentiate using the product rule .

$$ \begin{align*}% f'(x) & = \blue{4x^3}\tanh 3x + x^4\cdot \red{3\operatorname{sech}^2 3x}\\ & = 4x^3\tanh 3x + 3x^4\sech^2 3x \end{align*} $$

Step 3

Simplify by factoring.

$$ \begin{align*} f'(x) & = 4\blue{x^3}\tanh 3x + 3\blue{x^4}\sech^2 3x\\ & = \blue{x^3}\left(4\tanh 3x + 3x\sech^2 3x\right) \end{align*} $$

Answer

$$\displaystyle f'(x) = x^3\left(4\tanh 3x + 3x\sech^2 3x\right)$$.

Example 3

Find $$\displaystyle \frac d {dx}\left(\frac{\sinh 8x}{1 + \sech 8x}\right)$$.

Step 1

Differentiate using the quotient rule. The parts in $$\blue{blue}$$ are related to the numerator.

$$ \begin{align*} \frac d {dx}\left(\frac{\sinh 8x}{1 + \sech 8x}\right) & = \frac{(1 + \sech 8x)\cdot\blue{8\cosh 8x} - \blue{\sinh 8x}\cdot (-8)\sech 8x\tanh 8x}{(1 + \sech 8x)^2} \end{align*} $$

Step 2

Simplify the numerator.

$$ \begin{align*} \frac d {dx}\left(\frac{\sinh 8x}{1 + \sech 8x}\right) & = \frac{(1 + \sech 8x)\cdot \blue 8\cosh 8x - \sinh 8x\cdot \blue{(-8)}\sech 8x\tanh 8x}{(1 + \sech 8x)^2}\\[6pt] & = \frac{\blue 8(1 + \red{\sech 8x})\cdot \cosh 8x + \blue 8 \sinh 8x\cdot \red{\sech 8x}\tanh 8x}{(1 + \sech 8x)^2}\\[6pt] & = \frac{\blue 8\left(1 + \red{ \frac 1 {\cosh 8x}}\right)\cdot \cosh 8x + \blue 8\sinh 8x\cdot\red{\frac 1 {\cosh 8x}}\,\tanh 8x}{(1 + \sech 8x)^2}\\[6pt] & = \frac{\blue 8\left(\cosh 8x + 1\right) + \blue 8\cdot\frac{\sinh 8x}{\cosh 8x}\cdot\tanh 8x}{(1 + \sech 8x)^2}\\[6pt] & = \frac{\blue 8\left(\cosh 8x + 1\right) + \blue 8\cdot\tanh 8x\cdot\tanh 8x}{(1 + \sech 8x)^2}\\[6pt] & = \frac{\blue 8\left(\cosh 8x + 1 + \tanh^2 8x\right)}{(1 + \sech 8x)^2} \end{align*} $$

Answer

$$\displaystyle \frac d {dx}\left(\frac{\sinh 8x}{1 + \sech 8x}\right) = \frac{8\left(\tanh^2 8x + \cosh 8x + 1\right)}{(1 + \sech 8x)^2}$$

Example 4

Suppose $$f(x) = \coth^5 11x$$. Find $$f'(x)$$.

Step 1

Rewrite the function to emphasize that the cotangent is being raised to the fifth power.

$$ f(x) = \left(\coth 11x\right)^5 $$

Step 2

Differentiate using the chain rule.

$$ \begin{align*} f'(x) & = 5\left(\coth 11x\right)^4\cdot \frac d {dx}\left(\coth 11x\right)\\[6pt] & = 5\left(\coth 11x\right)^4\cdot (-11\csch^2 11x)\\[6pt] & = -55\left(\coth 11x\right)^4\cdot \csch^2 11x \end{align*} $$

Answer

$$\displaystyle f'(x) = -55\left(\coth 11x\right)^4\cdot \csch^2 11x$$.

Continue to Practice Problems
Download this web page as a pdf with answer key

back to How to Differentiate Trigonometric Functions next to How to Find Derivatives of Inverse Functions

Ultimate Math Solver (Free)

Free Algebra Solver ... type anything in there!